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Abstract

This paper presents the formulation of piezoelectric elasticity under generalized plane deformation derived from the

three-dimensional theory. There are four decoupled classes in the generalized plane deformation formulation, i.e. when

l3ðlÞ ¼ l�2ðlÞ ¼ 0, l3ðlÞ ¼ l�3ðlÞ ¼ 0, l�3ðlÞ ¼ l�2ðlÞ ¼ 0 or l3ðlÞ ¼ l�3ðlÞ ¼ l�2ðlÞ ¼ 0. Only the inplane fields of the first

class and the antiplane field of the second class include the piezoelectric effect. Several examples of wedge problem often

encountered in smart structures, such as sensors or actuators are studied to examine the stress singularity near the apex

of the structure. The bonded materials to the PZT-4 wedge are PZT-5, graphite/epoxy or aluminum (conductor). The

influencing factors on the singular behavior of the electro-elastic fields include the wedge angle, material type, poling

direction, and the boundary and interface conditions. The numerical results of the first case are compared with Xu’s

graphs and some comments are made in detail. In addition, some new results regarding the antiplane stress singularity

of the second class are obtained via the case study. The coupled singularity solutions under generalized plane defor-

mation are also investigated to seek the conditions of the weakest or vanishing singular stress fields. � 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials are widely used in actuators due to its electro-mechanical coupling behavior
(Gandhi and Thompson, 1992; Uchino, 1997). The actuators involving piezoelectric materials are usually
synthesized with fiber reinforced composites, electrodes, and other piezoelectric materials. The local regions
of the bonded materials are considered as wedges as shown in Fig. 1. Due to the geometric and material
discontinuities, the stresses approach to infinity theoretically at the apex of the wedge, i.e., the stresses are
singular. The failures initiate from the apex of the wedges frequently if the devices are operated in severe
environments or under strenuous loading conditions.
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Several different approaches to electro-elastic field have been proposed. Barnett and Lothe (1975) ex-
tended Stroh’s six-dimensional framework (Stroh, 1962) to an eight-dimensional formalism to solve a
generalized plane problem of piezoelectric body. Sosa (1991) extended the ideas developed by Lekhnitskii
(1963) in anisotropic elasticity to obtain the plane strain formulation of the piezoelectric problems. In
Sosa’s study, a six-order differential operator was performed and was used to solve the inplane problem in
piezoelectric media with defects. Chen and Lai (1997) and Chen and Yen (1998) used the generalized
Lekhnitskii’s formulation to formulate piezoelectric medium under generalized plane deformation.

The fracture mechanics have been widely investigated in the past few years. Parton (1976) first studied
the fracture problem in piezoelectric materials from a theoretical stand point of view. Sosa and Pak (1990)
used eigenfunction expansion to solve the stress and electric fields of a crack in a piezoelectric material. The
results show the characteristic r�0:5 singular behavior of the stress tensor in the vicinity of the crack. Kuo
and Barnett (1991) studied the crack and interface crack in piezoelectric mediums by using an extended
Stroh formulation. The results showed that the singularity orders of interface crack may not be �0.5. In
addition, Shindo et al. (1996, 1997) and Narita and Shindo (1998, 1999) studied the antiplane shear crack
problems in a piezoelectric medium as well as interface cracking between piezoelectric and orthotropic
layers.

Although the crack problems of piezoelectric materials have been widely investigated in the past decade,
the wedge problems involving piezoelectric materials, composite materials, and conductors are rarely re-
ported in the literature. To the author’s knowledge, there is only one paper discussing the piezoelectric
wedges (Xu and Rajapakse, 2000). Before this, the isotropic and/or anisotropic wedge and junction
problems had been extensively studied (e.g. Tranter, 1948; Williams, 1952; Bogy, 1971; Theocaris, 1974;
Bogy, 1972; Delale, 1984; Ting, 1986; Ma and Hour, 1989; Huang and Chen, 1994; Chen, 1998).

The polarized piezoelectric material possesses some symmetry for certain poling orientations. In Xu’s
paper, the poling axis is oriented in the x–y plane, which thereby limits the investigation of the piezoelectric
effect to the inplane field. If the poling direction is along the z-axis, the piezoelectric wedge problem will be
decoupled into inplane and antiplane problems. The inplane field simply consists of the elastic deformation
of stresses ðrx; ry ; sxyÞ and displacements (u, v). The antiplane field couples the antiplane elastic deformation

Fig. 1. Several typical wedge structures in actuators: (a) Piezoelectric–piezoelectric wedges; (b) piezoelectric–composite wedges; (c)

piezoelectric–conductor wedges; and (d) debonded junctions involving piezoelectric materials.
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ðsxz; syz;wÞ with the inplane electric parameters ðDx;Dy ;Ex;Ey ;UÞ. Based on the fundamental study of the
coupling behavior by using the eigenfunction expansion, the singularity stress behavior of piezoelectric
wedge problems is investigated in this paper.

2. Basic formulation

The constitutive equation of piezoelectric materials is given as follows:

ex
ey
ez
cyz
cxz
cxy
�Ex

�Ey

�Ez

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼

s11 s12 s13 s14 s15 s16 g11 g21 g31

s12 s22 s23 s24 s25 s26 g12 g22 g32

s13 s23 s33 s34 s35 s36 g13 g23 g33

s14 s24 s34 s44 s45 s46 g14 g24 g34

s15 s25 s35 s45 s55 s56 g15 g25 g35

s16 s26 s36 s46 s56 s66 g16 g26 g36

g11 g12 g13 g14 g15 g16 �b11 �b12 �b13

g21 g22 g23 g24 g25 g26 �b12 �b22 �b23

g31 g32 g33 g34 g35 g36 �b13 �b23 �b33

2
6666666666664

3
7777777777775

rx

ry

rz

syz
sxz
sxy
Dx

Dy

Dz

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð1Þ

where ei, cij are normal and shear strains, Ei are electric fields, ri, sij are normal and shear stresses, Di are
electric displacements, sij are compliance constants, gij are piezoelectric constants, and bij are impermit-
tivities. Consider a homogeneous piezoelectric body (material 1) bonded by another homogeneous body
(material 2) shown in Fig. 2. The length in longitudinal direction is assumed to be infinite. The body is
referred to the Cartesian coordinates x, y, z. The z-axis is parallel to the longitudinal direction. The body is
assumed to be generalized plane deformation and subjected to generalized plane electric field. All physical
quantities, such as stresses, strains, displacements, electric fields, electric displacements and electric po-
tentials, are functions of x and y only. Eq. (1) can be reduced to the following equation (see Appendix A for
details)

ou=ox
ov=oy
ow=oy
ow=ox

ou=oy þ ov=ox
oU=ox
oU=oy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

a11 a12 a14 a15 a16 b11 b21

a12 a22 a24 a25 a26 b12 b22

a14 a24 a44 a45 a46 b14 b24

a15 a25 a45 a55 a56 b15 b25

a16 a26 a46 a56 a66 b16 b26

b11 b12 b14 b15 b16 �d11 �d12

b21 b22 b24 b25 b26 �d12 �d22

2
666666664

3
777777775

rx

ry

syz
sxz
sxy
Dx

Dy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð2Þ

where u, v, w, and U denote the displacements in the x-, y-, z-direction and electric potential, respectively.
aij, bij, dij are the reduced material constants defined as

aij ¼ sij �
si3sj3
s33

þ
g3i � si3g33=s33ð Þ g3j � sj3g33=s33

� �
b33 þ g33g33=s33

i; j ¼ 1; . . . ; 6 ð3aÞ

bij ¼ gij �
sj3gi3
s33

�
bi3 þ gi3g33=s33ð Þ g3j � sj3g33=s33

� �
b33 þ g33g33=s33

i ¼ 1; 2; j ¼ 1; . . . ; 6 ð3bÞ

dij ¼ bij þ
gi3gj3
s33

�
bi3 þ gi3g33=s33ð Þ bj3 þ gj3g33=s33

� �
b33 þ g33g33=s33

i; j ¼ 1; 2 ð3cÞ
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In the absence of body force and free charge, define the stress functions F, W and the electric dis-
placement function / as follows

rx ¼
o2F
oy2

; ry ¼
o2F
ox2

; sxy ¼ � o2F
oxoy

; sxz ¼
oW
oy

; sxz ¼ � oW
ox

; Dx ¼
o/
oy

; Dy ¼ � o/
ox

ð4Þ

It can be shown that F, W and / satisfy the equilibrium and Maxwell’s equation automatically. Eliminating
u, v, w, and U by differentiating (i.e., compatibility equations for strain and electrical fields), it gives

L4F þ L3W þ L�
3/ ¼ 0 ð5aÞ

L3F þ L2W þ L�
2/ ¼ 0 ð5bÞ

L�
3F þ L�

2W þ L��
2 / ¼ 0 ð5cÞ

where

L4 ¼ a22

o4

ox4
� 2a26

o4

ox3oy
þ 2a12ð þ a66Þ

o4

ox2oy2
� 2a16

o4

oxoy3
þ a11

o4

oy4
ð6aÞ

L3 ¼ �a24

o3

ox3
þ a25ð þ a46Þ

o3

ox2oy
� a14ð þ a56Þ

o3

oxoy2
þ a15

o3

oy3
ð6bÞ

L�
3 ¼ �b22

o3

ox3
þ b12ð þ b26Þ

o3

ox2oy
� b21ð þ b16Þ

o3

oxoy2
þ b11

o3

oy3
ð6cÞ

L2 ¼ a44

o2

ox2
� 2a45

o2

oxoy
þ a55

o2

oy2
ð6dÞ

L�
2 ¼ b24

o2

ox2
� b14ð þ b25Þ

o2

oxoy
þ b15

o2

oy2
ð6eÞ

L��
2 ¼ �d22

o2

ox2
þ 2d12

o2

oxoy
� d11

o2

oy2
ð6fÞ

Fig. 2. The bimaterial wedge.
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Eliminating W and / in Eqs. (5a)–(5c) yields

L8F ¼ 0 ð7Þ

where

L8 ¼ L4L2L��
2 þ 2L3L�

3L
�
2 � L�

3L
�
3L2 � L4L�

2L
�
2 � L3L3L��

2 ð8Þ

Set F ¼ F ðxþ lyÞ and l is a complex number. Therefore the characteristic equation of Eq. (7) is

l8ðlÞ ¼ l4ðlÞl2ðlÞl��2 ðlÞ þ 2l3ðlÞl�3ðlÞl�2ðlÞ � l�3ðlÞl�3ðlÞl2ðlÞ � l4ðlÞl�2ðlÞl�2ðlÞ � l3ðlÞl3ðlÞl��2 ðlÞ ¼ 0

ð9Þ

where

l4ðlÞ ¼ a11l
4 � 2a16l

3 þ 2a12ð þ a66Þl2 � 2a26l þ a22 ð10aÞ

l3ðlÞ ¼ a15l
3 � a14ð þ a56Þl2 þ a25ð þ a46Þl � a24 ð10bÞ

l�3ðlÞ ¼ b11l
3 � b21ð þ b16Þl2 þ b12ð þ b26Þl � b22 ð10cÞ

l2ðlÞ ¼ a55l
2 � 2a45l þ a44 ð10dÞ

l�2ðlÞ ¼ b15l
2 � b14ð þ b25Þl þ b24 ð10eÞ

l��2 ðlÞ ¼ �d11l2 þ 2d12l � d22 ð10fÞ

It can be shown that the roots of Eq. (9), denoted as lk ðk ¼ 1; 2; . . . ; 8Þ, are complex numbers (Suo et al.,
1992). For convenience, the imaginary parts of l1, l2, l3 and l4 are chosen to be positive. l5, l6, l7 and l8

are conjugate of l1, l2, l3 and l4, respectively. The solution of Eqs. (5a)–(5c) can be written as

F ¼ Re
X4

k¼1

Fkðx
"

þ lkyÞ
#

ð11aÞ

Similarly,

W ¼ Re
X4

k¼1

Wkðx
"

þ lkyÞ
#

ð11bÞ

/ ¼ Re
X4

k¼1

/kðx
"

þ lkyÞ
#

ð11cÞ

By eliminating / in Eqs. (5a)–(5c), we can obtain relationship between Fk and Wk as

Wk ¼ Kk
dFk
dzk

; for k ¼ 1; 2; 4

Wk ¼
1

Kk

dFk
dzk

; for k ¼ 3

ð12Þ
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where zk ¼ xþ lky and

Kk ¼

� l3 lkð Þl��2 lkð Þ � l�3 lkð Þl�2 lkð Þ
l2 lkð Þl��2 lkð Þ � l�2 lkð Þl�2 lkð Þ for k ¼ 1; 2

� l3 lkð Þl��2 lkð Þ � l�3 lkð Þl�2 lkð Þ
l4 lkð Þl��2 lkð Þ � l�3 lkð Þl�3 lkð Þ for k ¼ 3

� l4 lkð Þl�2 lkð Þ � l3 lkð Þl�3 lkð Þ
l3 lkð Þl�2 lkð Þ � l2 lkð Þl�3 lkð Þ for k ¼ 4

8>>>>>>><
>>>>>>>:

ð13Þ

Similarly, eliminating W in Eqs. (5a)–(5c), it gives

/k ¼
Xk

dFk
dzk

; for k ¼ 1; 2; 3

1

Xk

dFk
dzk

; for k ¼ 4

8>><
>>: ð14Þ

where

Xk ¼

� l2 lkð Þl�3 lkð Þ � l3 lkð Þl�2 lkð Þ
l2 lkð Þl��2 lkð Þ � l�2 lkð Þl�2 lkð Þ for k ¼ 1; 2

� l4 lkð Þl�2 lkð Þ � l3 lkð Þl�3 lkð Þ
l�3 lkð Þl�2 lkð Þ � l3 lkð Þl��2 lkð Þ for k ¼ 3

� l2 lkð Þl�3 lkð Þ � l3 lkð Þl�2 lkð Þ
l2 lkð Þl4 lkð Þ � l3 lkð Þl3 lkð Þ for k ¼ 4

8>>>>>>>><
>>>>>>>>:

ð15Þ

Therefore, Eqs. (11a)–(11c) can be rewritten as

F ¼ 2Re F1½ þ F2 þ F3 þ F4� ð16aÞ

W ¼ 2Re K1F 0
1

�
þ K2F 0

2 þ
1

K3

F 0
3 þ K4F 0

4

�
ð16bÞ

/ ¼ 2Re X1F 0
1

�
þ X2F 0

2 þ X3F 0
3 þ

1

X4

F 0
4

�
ð16cÞ

By changing the notations

f1 ¼ F 0
1; f2 ¼ F 0

2; f3 ¼
1

K3

F 0
3; f4 ¼

1

X4

F 0
4 ð17Þ

Substituting Eqs. (16a)–(16c) into Eq. (4) and using the notations of Eq. (17), it gives

rx ¼ 2Re l2
1f

0
1

�
þ l2

2f
0
2 þ l2

3K3f 0
3 þ l2

4X4f 0
4

�
ð18aÞ

ry ¼ 2Re f 0
1

�
þ f 0

2 þ K3f 0
3 þ X4f 0

4

�
ð18bÞ

sxy ¼ �2Re l1f
0
1

�
þ l2f

0
2 þ l3K3f 0

3 þ l4X4f 0
4

�
ð18cÞ

sxz ¼ 2Re l1K1f 0
1

�
þ l2K2f 0

2 þ l3f
0
3 þ l4K4X4f 0

4

�
ð18dÞ

syz ¼ �2Re K1f 0
1

�
þ K2f 0

2 þ f 0
3 þ K4X4f 0

4

�
ð18eÞ
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Dx ¼ 2Re l1X1f 0
1

�
þ l2X2f 0

2 þ l3K3X3f 0
3 þ l4f

0
4

�
ð18fÞ

Dy ¼ �2Re X1f 0
1

�
þ X2f 0

2 þ K3X3f 0
3 þ f 0

4

�
ð18gÞ

where fk denote the undetermined complex function; prime denotes the first derivative with respect to the
argument zk ðzk ¼ xþ lkyÞ.

Substituting Eqs. (18a)–(18g) into Eq. (2) and integrating, the results are

u ¼ 2Re
X4

k¼1

u�kfk

" #
ð19aÞ

v ¼ 2Re
X4

k¼1

v�kfk

" #
ð19bÞ

w ¼ 2Re
X4

k¼1

w�
kfk

" #
ð19cÞ

U ¼ 2Re
X4

k¼1

U�
kfk

" #
ð19dÞ

Ex ¼ �2Re
X4

k¼1

U�
kf

0
k

" #
ð19eÞ

Ey ¼ �2Re
X4

k¼1

lkU
�
kf

0
k

" #
ð19fÞ

where

u�k ¼
a11l2

k þ a12 � a14Kk þ a15lkKk � a16lk þ b11lkXk � b21Xk for k ¼ 1; 2
a11l2

kKk þ a12Kk � a14 þ a15lk � a16lkKk þ b11lkKkXk � b21KkXk for k ¼ 3
a11l2

kXk þ a12Xk � a14KkXk þ a15lkKkXk � a16lkXk þ b11lk � b21 for k ¼ 4

8<
: ð20aÞ

v�k ¼
a12lk þ a22=lk � a24Kk=lk þ a25Kk � a26 þ b12Xk � b22Xk=lk for k ¼ 1; 2
a12lkKk þ a22Kk=lk � a24=lk þ a25 � a26Kk þ b12KkXk � b22KkXk=lk for k ¼ 3
a12lkXk þ a22Xk=lk � a24KkXk=lk þ a25KkXk � a26Xk þ b12 � b22=lk for k ¼ 4

8<
: ð20bÞ

w�
k ¼

a14lk þ a24=lk � a44Kk=lk þ a45Kk � a46 þ b14Xk � b24Xk=lk for k ¼ 1; 2
a14lkKk þ a24Kk=lk � a44=lk þ a45 � a46Kk þ b14KkXk � b24KkXk=lk for k ¼ 3
a14lkXk þ a24Xk=lk � a44KkXk=lk þ a45KkXk � a46Xk þ b14 � b24=lk for k ¼ 4

8<
: ð20cÞ

U�
k ¼

b11l2
k þ b12 � b14Kk þ b15lkKk � b16lk � d11lkXk þ d12Xk for k ¼ 1; 2

b11l2
kKk þ b12Kk � b14 þ b15lk � b16lkKk � d11lkKkXk þ d12KkXk for k ¼ 3

b11l2
kXk þ b12Xk � b14KkXk þ b15lkKkXk � b16lkXk � d11lk þ d12 for k ¼ 4

8<
: ð20dÞ

The integrating constants, which represent the rigid body motions (Chen and Yen, 1998), are ignored here.
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3. Degenerate cases

Since the diagonal elements in Eq. (2) are non-zero, the polynomials l4ðlÞ, l2ðlÞ, l��2 ðlÞ will not vanish.
However, l3ðlÞ, l�3ðlÞ, l�2ðlÞ may be zero for some symmetry properties of materials. Four decoupled
categories can be deduced from the piezoelectric formulation under generalized plane deformation.

3.1. Class A: l3(l)¼ l�2(l)¼ 0

If the material symmetry has the properties

s14 ¼ s15 ¼ s24 ¼ s25 ¼ s46 ¼ s56 ¼ s34 ¼ s35 ¼ 0

g14 ¼ g15 ¼ g24 ¼ g25 ¼ g31 ¼ g32 ¼ g33 ¼ g36 ¼ 0

b13 ¼ b23 ¼ 0

ð21Þ

Eq. (2) becomes

ou=ox
ov=oy
ow=oy
ow=ox

ou=oy þ ov=ox
oU=ox
oU=oy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

a11 a12 0 0 a16 b11 b21

a12 a22 0 0 a26 b12 b22

0 0 a44 a45 0 0 0
0 0 a45 a55 0 0 0
a16 a26 0 0 a66 b16 b26

b11 b12 0 0 b16 �d11 �d12
b21 b22 0 0 b26 �d12 �d22

2
666666664

3
777777775

rx

ry

syz
sxz
sxy
Dx

Dy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð22Þ

One example of this case is that the material is symmetric with respect to the x–y plane. The formulation is
decoupled into inplane and antiplane problems. The inplane problem consists of rx, ry , sxy , u, v, Dx, Dy , Ex,
Ey and U, while antiplane problem consists of sxz, syz, w.

Eqs. (10b) and (10e) yield

l3ðlÞ ¼ l�2ðlÞ ¼ 0 ð23Þ
and Eq. (9) is reduced to be

l2ðlÞ l4ðlÞl��2 ðlÞ
�

� l�3ðlÞl�3ðlÞ
�
¼ 0 ð24Þ

or

l4ðlÞl��2 ðlÞ � l�3ðlÞl�3ðlÞ ¼ 0 ð25aÞ

l2ðlÞ ¼ 0 ð25bÞ
Eq. (25a) corresponds to inplane problem, and Eq. (25b) to antiplane problem. Under this condition, the
mechanical and electrical fields are reduced to the following:

rx ¼ 2Re l2
1f

0
1

�
þ l2

2f
0
2 þ l2

4X4f 0
4

�
ð26aÞ

ry ¼ 2Re f 0
1

�
þ f 0

2 þ X4f 0
4

�
ð26bÞ

sxy ¼ �2Re l1f
0
1

�
þ l2f

0
2 þ l4X4f 0

4

�
ð26cÞ

Dx ¼ 2Re l1X1f 0
1

�
þ l2X2f 0

2 þ l4f
0
4

�
ð26dÞ

Dy ¼ �2Re X1f 0
1

�
þ X2f 0

2 þ f 0
4

�
ð26eÞ
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u ¼ 2Re u�1f1
�

þ u�2f2 þ u�4f4
�

ð26fÞ

v ¼ 2Re v�1f1
�

þ v�2f2 þ v�4f4
�

ð26gÞ

U ¼ 2Re U�
1f1

�
þ U�

2f2 þ U�
4f4

�
ð26hÞ

Ex ¼ �2Re U�
1f

0
1

�
þ U�

2f
0
2 þ U�

4f
0
4

�
ð26iÞ

Ey ¼ �2Re l1U
�
1f

0
1

�
þ l2U

�
2f

0
2 þ l4U

�
4f

0
4

�
ð26jÞ

for inplane problem, and

sxz ¼ 2Re l3f
0
3

� �
ð27aÞ

syz ¼ �2Re f 0
3

� �
ð27bÞ

w ¼ 2Re w�
3f

0
3

� �
ð27cÞ

for antiplane problem. If only the antiplane shear stresses sxz or syz are applied, there is no electric response
in the piezoelectric body.

Sosa (1991) has derived the formulations of this decoupled case and applied to the problem of an infinite
piezoelectrical medium weakened by an elliptical hole. Later, Xu and Rajapakse (2000) used same for-
mulations to solve the stress singularities in composite piezoelectric wedges and junctions.

3.2. Class B: l3(l)¼ l�3(l)¼ 0

Some material symmetry will lead to l3ðlÞ ¼ l�3ðlÞ ¼ 0. For example, hexagonal 6mm class symmetry is
one of the cases. Eq. (2) has the form:

ou=ox
ov=oy
ow=oy
ow=ox

ou=oy þ ov=ox
oU=ox
oU=oy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

a11 a12 0 0 0 0 0
a12 a11 0 0 0 0 0
0 0 a44 0 0 0 b15

0 0 0 a44 0 b15 0
0 0 0 0 a66 0 0
0 0 0 b15 0 �d11 0
0 0 b15 0 0 0 �d11

2
666666664

3
777777775

rx

ry

syz
sxz
sxy
Dx

Dy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð28Þ

where a66 ¼ 2ða11 � a12Þ. It is observed that

a15 ¼ a14 ¼ a56 ¼ a25 ¼ a46 ¼ a24 ¼ 0
b11 ¼ b21 ¼ b16 ¼ b12 ¼ b26 ¼ b22 ¼ 0

ð29Þ

From Eqs. (10a)–(10f), it gives l3ðlÞ ¼ l�3ðlÞ ¼ 0. Eq. (9) is simplified as

l4ðlÞ l2ðlÞl��2 ðlÞ
�

� l�2ðlÞl�2ðlÞ
�
¼ 0 ð30Þ

The mechanical and electrical fields can be rewritten as

rx ¼ 2Re l2
1f

0
1

�
þ l2

2f
0
2

�
ð31aÞ

ry ¼ 2Re f 0
1

�
þ f 0

2

�
ð31bÞ
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sxy ¼ �2Re l1f
0
1

�
þ l2f

0
2

�
ð31cÞ

u ¼ 2Re u�1f1
�

þ u�2f2
�

ð31dÞ

v ¼ 2Re v�1f1
�

þ v�2f2
�

ð31eÞ

sxz ¼ 2Re l3f
0
3

�
þ l4K4X4f 0

4

�
ð32aÞ

syz ¼ �2Re f 0
3

�
þ K4X4f 0

4

�
ð32bÞ

w ¼ 2Re w�
3f

0
3

�
þ w�

4f
0
4

�
ð32cÞ

Dx ¼ 2Re l3K3X3f 0
3

�
þ l4f

0
4

�
ð32dÞ

Dy ¼ �2Re K3X3f 0
3

�
þ f 0

4

�
ð32eÞ

U ¼ 2Re U�
3f3

�
þ U�

4f4
�

ð32fÞ

Ex ¼ �2Re U�
3f

0
3

�
þ U�

4f
0
4

�
ð32gÞ

Ey ¼ �2Re l3U
�
3f

0
3

�
þ l4U

�
4f

0
4

�
ð32hÞ

The electro-elastic field is decoupled into the inplane elastic field ðrx; ry ; sxy ; u; vÞ and the antiplane elastic
field ðsxz; syz;wÞ associated with inplane electrical field ðDx;Dy ;Ex;Ey ;UÞ. If only in-plane stresses are ap-
plied, there is no electric response in the piezoelectric body.

The antiplane crack problems of this decoupled case have been extensively investigated in last decade,
such as Shindo et al. (1996, 1997) and Narita and Shindo (1998, 1999). The poling direction is along the z-
axis.

3.3. Class C: No piezoelectric effect (l�3(l)¼ l�2(l)¼ 0)

For some crystal symmetry, such as orthotropic material (orthorhombic mmm class), the piezoelec-
tric effect is not exhibited. The piezoelectric constants gij and hence l�3ðlÞ, l�2ðlÞ are zero. Eq. (9) becomes

l��2 ðlÞ l4ðlÞl2ðlÞ½ � l3ðlÞl3ðlÞ� ¼ 0 ð33Þ

or

l4ðlÞl2ðlÞ � l3ðlÞl3ðlÞ ¼ 0 ð34aÞ

l��2 ðlÞ ¼ 0 ð34bÞ
Eqs. (34a) and (34b) correspond to mechanical and electrical responses, respectively. Also, Eq. (13) is re-
duced to the following form

Kk ¼
� l3 lkð Þ
l2 lkð Þ for k ¼ 1; 2

� l3 lkð Þ
l4 lkð Þ for k ¼ 3

8>><
>>: ð35Þ

3140 C.-H. Chue, C.-D. Chen / International Journal of Solids and Structures 39 (2002) 3131–3158



The functions X1ðl1Þ, X2ðl2Þ, X4ðl4Þ, K3ðl3ÞX3ðl3Þ and K4ðl4ÞX4ðl4Þ in Eqs. (18a)–(18g) vanish. The
mechanical and electrical fields are then

rx ¼ 2Re l2
1f

0
1

�
þ l2

2f
0
2 þ l2

3K3f 0
3

�
ð36aÞ

ry ¼ 2Re f 0
1

�
þ f 0

2 þ K3f 0
3

�
ð36bÞ

sxy ¼ �2Re l1f
0
1

�
þ l2f

0
2 þ l3K3f 0

3

�
ð36cÞ

sxz ¼ 2Re l1K1f 0
1

�
þ l2K2f 0

2 þ l3f
0
3

�
ð36dÞ

syz ¼ �2Re K1f 0
1

�
þ K2f 0

2 þ f 0
3

�
ð36eÞ

u ¼ 2Re u�1f1
�

þ u�2f2 þ u�3f3
�

ð36fÞ

v ¼ 2Re v�1f1
�

þ v�2f2 þ v�3f3
�

ð36gÞ

w ¼ 2Re w�
1f1

�
þ w�

2f2 þ w�
3f3

�
ð36hÞ

Dx ¼ 2Re l4f
0
4

� �
ð37aÞ

Dy ¼ �2Re f 0
4

� �
ð37bÞ

U ¼ 2Re U�
4f4

� �
ð37cÞ

Ex ¼ �2Re U�
4f

0
4

� �
ð37dÞ

Ey ¼ �2Re l4U
�
4f

0
4

� �
ð37eÞ

The stresses and displacements are exactly the same as the formulations derived by Lekhnitskii (1963). It
can be seen that the mechanical and electrical responses are decoupled. Now, the reduced material con-
stants in Eq. (2) become

aij ¼ sij �
si3sj3
s33

ð38aÞ

bij ¼ 0 ð38bÞ

dij ¼ bij �
bi3bj3

b33

ð38cÞ

3.4. Class D: l3(l)¼ l�3(l)¼ l�2(l)¼ 0

One example of this case is that the principal axes of the orthotropic material are placed in the x–y plane
or along the z-axis. Eq. (9) is simplified as

l4ðlÞl2ðlÞl��2 ðlÞ ¼ 0 ð39Þ
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The problem is decoupled into three parts. They are (a) l4ðlÞ ¼ 0: the inplane case for mechanical response
ðrx; ry ; sxy ; u; vÞ; (b) l2ðlÞ ¼ 0: the antiplane case for mechanical response ðsxz; syz;wÞ and (c) l��2 ðlÞ ¼ 0: the
inplane case for electrical response ðDx;Dy ;Ex;Ey ;UÞ. The physical quantities are given as follows:

rx ¼ 2Re l2
1f

0
1

�
þ l2

2f
0
2

�
ð40aÞ

ry ¼ 2Re f 0
1

�
þ f 0

2

�
ð40bÞ

sxy ¼ �2Re l1f
0
1

�
þ l2f

0
2

�
ð40cÞ

u ¼ 2Re u�1f1
�

þ u�2f2
�

ð40dÞ

v ¼ 2Re v�1f1
�

þ v�2f2
�

ð40eÞ

sxz ¼ 2Re l3f
0
3

� �
ð41aÞ

syz ¼ �2Re f 0
3

� �
ð41bÞ

w ¼ 2Re w�
3f3

� �
ð41cÞ

Dx ¼ 2Re l4f
0
4

� �
ð42aÞ

Dy ¼ �2Re f 0
4

� �
ð42bÞ

U ¼ 2Re U�
4f4

� �
ð42cÞ

Ex ¼ �2Re U�
4f

0
4

� �
ð42dÞ

Ey ¼ �2Re l4U
�
4f

0
4

� �
ð42eÞ

4. Applications to wedge problems

The eigenfunction expansion method is widely used to compute the stress singularity order of the wedge
problems. The potential functions fkðzkÞ in the physical quantities of Eqs. (18a)–(18g) are written in the
form

fk zkð Þ ¼ Akzkk þ Bkz
�kk
k k ¼ 1; . . . ; 4 ð43Þ

where Ak, Bk are unknown complex constants, k is eigenvalue. It is convenient to express the physical
quantities in polar coordinate when the boundary and continuity conditions on the edges or bonding in-
terface are considered. The transformations of stresses, etc. from Cartesian coordinates to polar coordi-
nates are as follows:

rh ¼ n2rx þ m2ry � 2mnsxy ð44aÞ

srh ¼ �mnrx þ mnry þ m2
�

� n2
�
sxy ð44bÞ

3142 C.-H. Chue, C.-D. Chen / International Journal of Solids and Structures 39 (2002) 3131–3158



shz ¼ �nsxz þ msyz ð44cÞ

Dh ¼ �nDx þ mDy ð44dÞ
where m ¼ cos h and n ¼ sin h.

4.1. Boundary and continuity conditions

Due to the intrinsic electric coupling effect, the sensors and actuators in smart structures often have
several composite wedges involving piezoelectric materials. Fig. 2 shows a two-material wedge system. The
x-axis of the coordinate system xyz is placed along bonded surface. It makes angle h1 with the global
coordinate system XYZ. The wedge angles h2 and h3 are defined in XYZ system. For convenience, material
1 is always referred to as piezoelectric material and material 2 may be piezoelectric material, composite
material or isotropic material (conductor). In the case of generalized plane deformation, all possible
boundary conditions are described as follows.

a. The edge of piezoelectric material

Traction free: rh ¼ srh ¼ shz ¼ 0 ð45aÞ

Electrically open: Dh ¼ 0 ð45bÞ
b. The edge of composite or conductor material

Traction free: rh ¼ srh ¼ shz ¼ 0 ð46Þ
c. The continuity conditions at the piezoelectric–piezoelectric interface

Continuity of stresses: rð1Þ
h ¼ rð2Þ

h ; sð1Þrh ¼ sð2Þrh ; sð1Þhz ¼ sð2Þhz ð47aÞ

Continuity of displacements: uð1Þ ¼ uð2Þ; vð1Þ ¼ vð2Þ; wð1Þ ¼ wð2Þ ð47bÞ

Continuity of electric displacements: Dð1Þ
h ¼ Dð2Þ

h ð47cÞ

Continuity of electric potential: Uð1Þ ¼ Uð2Þ ð47dÞ
The superscripts 1 and 2 denote materials 1 and 2, respectively.

d. Continuity conditions at the piezoelectric–composite interface

Continuity of stresses: rð1Þ
h ¼ rð2Þ

h ; sð1Þrh ¼ sð2Þrh ; sð1Þhz ¼ sð2Þhz ð48aÞ

Continuity of displacements: uð1Þ ¼ uð2Þ; vð1Þ ¼ vð2Þ; wð1Þ ¼ wð2Þ ð48bÞ

Electric insulation condition for composites: Dð1Þ
h ¼ 0 ð48cÞ

The superscripts 1 and 2 denote the piezoelectric material and composite material, respectively.
e. Continuity conditions at the piezoelectric–conductor interface

Continuity of stresses: rð1Þ
h ¼ rð2Þ

h ; sð1Þrh ¼ sð2Þrh ; sð1Þhz ¼ sð2Þhz ð49aÞ

Continuity of displacements: uð1Þ ¼ uð2Þ; vð1Þ ¼ vð2Þ; wð1Þ ¼ wð2Þ ð49bÞ

Ideal electric conductor condition: Uð1Þ ¼ 0 ð49cÞ

C.-H. Chue, C.-D. Chen / International Journal of Solids and Structures 39 (2002) 3131–3158 3143



The superscripts 1 and 2 denote the piezoelectric material and conductor material, respectively.

The boundary or continuity conditions can be combined to form different wedge problems. For example,
the boundary and continuity conditions of piezoelectric–composite wedge are Eqs. (45a), (45b), (46), (48a)–
(48c). These 14 boundary and continuity conditions can be written as

M½ � Xf g ¼ 0f g ð50Þ

where [M] is a 14� 14 matrix and {X} is a 14� 1 vector containing the unknown constants Ak and Bk,
k ¼ 1; . . . ; 4. The elements in [M] are functions of material constants, wedge angle and eigenvalue k. For a
non-trivial solution, the determinant of [M] must vanish, i.e.,

det½M � ¼ 0 ð51Þ

From Eq. (51), the eigenvalues in the interval 0 < Re½k� < 1 can be solved numerically. The value Re½k� � 1
is called the stress singularity order. Table 1 lists the boundary and continuity conditions and the di-
mensions of matrix [M].

As the generalized plane deformation problem is degenerated to classes A and B as described in Section
3, the dimension can be further reduced. For example, consider that two-piezoelectric material wedges are
bonded together. The poling directions of both materials are in the x–y plane. The dimensions of the matrix
[M] are 12� 12 and 4� 4 for inplane and antiplane stress fields, respectively. Table 2 summaries the
boundary and continuity conditions and the dimensions of matrix [M] of all possible degenerated cases. If
the wedge structure consists of composite material, the fiber orientation of the composite should be in the
x–y plane or along the z-axis for all considered degenerate cases. Otherwise the problem is coupled. The
boundary and continuity conditions listed in Table 1 should be employed instead of Table 2. Some ex-
amples of this type will be discussed later.

4.2. Numerical results and discussion

In this section, several examples are considered. Some of them have been investigated by the previous
studies, such as Xu and Rajapakse (2000). The others are new results. Although some of the problems have
been decoupled, we use the generalized plane deformation formulation to solve the eigenvalue. The
boundary conditions are listed in Table 1. The materials used in the following calculation contain PZT-4,

Table 1

The boundary and continuity conditions and the dimension of the characteristic determinant under generalized plane deformation

Wedge type Boundary and continuity conditions Dimension of

characteristic

determinant

One-piezoelec-

tric wedge

rh ¼ srh ¼ shz ¼ Dh ¼ 0 at both edges 8� 8

Two-piezoelec-

tric wedge

rh ¼ srh ¼ shz ¼ Dh ¼ 0 at h ¼ h2; h3

rð1Þ
h ¼ rð2Þ

h ; sð1Þrh ¼ sð2Þrh ; sð1Þhz ¼ sð2Þhz ; uð1Þ ¼ uð2Þ; vð1Þ ¼ vð2Þ;
wð1Þ ¼ wð2Þ; Dð1Þ

h ¼ Dð2Þ
h ; Uð1Þ ¼ Uð2Þ at h ¼ h1

16� 16

Piezoelectric–

composite

wedge

rh ¼ srh ¼ shz ¼ Dh ¼ 0 at h ¼ h2

rh ¼ srh ¼ shz ¼ 0 at h ¼ h3

rð1Þ
h ¼ rð2Þ

h ; sð1Þrh ¼ sð2Þrh ; sð1Þhz ¼ sð2Þhz ; uð1Þ ¼ uð2Þ; vð1Þ ¼ vð2Þ; wð1Þ ¼ wð2Þ; Dð1Þ
h ¼ 0 at h ¼ h1 14� 14

Piezoelectric–

conductor

wedge

rh ¼ srh ¼ shz ¼ Dh ¼ 0 at h ¼ h2

rh ¼ srh ¼ shz ¼ 0 at h ¼ h3

rð1Þ
h ¼ rð2Þ

h ; sð1Þrh ¼ sð2Þrh ; sð1Þhz ¼ sð2Þhz ; uð1Þ ¼ uð2Þ; vð1Þ ¼ vð2Þ; wð1Þ ¼ wð2Þ; Uð1Þ ¼ 0 at h ¼ h1 14� 14
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PZT-5, graphite/epoxy and the aluminum (as a conductor). The material properties of piezoceramics PZT-4
polarized in x-direction are given below (Xu and Rajapakse, 2000):

s11 ¼ 7:9� 10�12 m2=N; s33 ¼ s22 ¼ 10:9� 10�12 m2=N; s12 ¼ �2:1� 10�12 m2=N;

s23 ¼ �5:42� 10�12 m2=N; s55 ¼ 19:3� 10�12 m2=N; s44 ¼ 2ðs22 � s23Þ

g11 ¼ 26:1� 10�3 Vm=N; g13 ¼ g12 ¼ �11:1� 10�3 Vm=N; g35 ¼ g26 ¼ 39:4� 10�3 Vm=N

b11 ¼ 8:69� 107 V2=N; b33 ¼ b22 ¼ 7:66� 107 V2=N

Table 2

The boundary and continuity conditions and the dimension of the characteristic determinant of two degenerate cases for various wedge

types

Wedge type Degenerate cases Boundary and continuity conditions Dimension of

characteristic

determinant

One-

piezoelectric

wedge

Poling:

x–y plane

Inplane rh ¼ srh ¼ Dh ¼ 0 at both edges 6� 6

Antiplane shz ¼ 0 at both edges 2� 2

Poling:

z-axis

Inplane rh ¼ srh ¼ 0 at both edges 4� 4

Antiplane shz ¼ Dh ¼ 0 at both edges 4� 4

Two-

piezoelectric

wedge

Poling:

x–y plane

Inplane rh ¼ srh ¼ Dh ¼ 0 at h ¼ h2; h3 12� 12

rð1Þ
h ¼ rð2Þ

h ; sð1Þrh ¼ sð2Þrh ; uð1Þ ¼ uð2Þ; vð1Þ ¼ vð2Þ;
Dð1Þ

h ¼ Dð2Þ
h ; Uð1Þ ¼ Uð2Þ at h ¼ h1

Antiplane shz ¼ 0 at h ¼ h2; h3 4� 4

sð1Þhz ¼ sð2Þhz ; wð1Þ ¼ wð2Þ at h ¼ h1

Poling:

z-axis

Inplane rh ¼ srh ¼ 0 at h ¼ h2; h3 8� 8

rð1Þ
h ¼ rð2Þ

h ; sð1Þrh ¼ sð2Þrh ; uð1Þ ¼ uð2Þ; vð1Þ ¼ vð2Þ at h ¼ h1

Antiplane shz ¼ Dh ¼ 0 at h ¼ h2; h3 8� 8

sð1Þhz ¼ sð2Þhz ; wð1Þ ¼ wð2Þ; Dð1Þ
h ¼ Dð2Þ

h ; Uð1Þ ¼ Uð2Þ at h ¼ h1

Piezoelectric–

composite wedge

Poling:

x–y plane

Inplane rh ¼ srh ¼ Dh ¼ 0 at h ¼ h2 10� 10

rh ¼ srh ¼ 0 at h ¼ h3

rð1Þ
h ¼ rð2Þ

h ; sð1Þrh ¼ sð2Þrh ; uð1Þ ¼ uð2Þ; vð1Þ ¼ vð2Þ; Dð1Þ
h ¼ 0 at h ¼ h1

Antiplane shz ¼ 0 at h ¼ h2; h3 4� 4

sð1Þhz ¼ sð2Þhz ; wð1Þ ¼ wð2Þ at h ¼ h1

Poling:

z-axis

Inplane rh ¼ srh ¼ 0 at h ¼ h2; h3 8� 8

rð1Þ
h ¼ rð2Þ

h ; sð1Þrh ¼ sð2Þrh ; uð1Þ ¼ uð2Þ; vð1Þ ¼ vð2Þ at h ¼ h1

Antiplane shz ¼ Dh ¼ 0 at h ¼ h2; shz ¼ 0 at h ¼ h3 6� 6

sð1Þhz ¼ sð2Þhz ; wð1Þ ¼ wð2Þ; Dð1Þ
h ¼ 0 at h ¼ h1

Piezoelectric–

conductor wedge

Poling:

x–y plane

Inplane rh ¼ srh ¼ Dh ¼ 0 at h ¼ h2 10� 10

rh ¼ srh ¼ 0 at h ¼ h3

rð1Þ
h ¼ rð2Þ

h ; sð1Þrh ¼ sð2Þrh ; uð1Þ ¼ uð2Þ; vð1Þ ¼ vð2Þ; Uð1Þ ¼ 0 at h ¼ h1

Antiplane shz ¼ 0 at h ¼ h2; h3 4� 4

sð1Þhz ¼ sð2Þhz ; wð1Þ ¼ wð2Þ at h ¼ h1

Poling:

z-axis

Inplane rh ¼ srh ¼ 0 at h ¼ h2; h3 8� 8

rð1Þ
h ¼ rð2Þ

h ; sð1Þrh ¼ sð2Þrh ; uð1Þ ¼ uð2Þ; vð1Þ ¼ vð2Þ at h ¼ h1

Antiplane shz ¼ Dh ¼ 0 at h ¼ h2; shz ¼ 0 at h ¼ h3 6� 6

sð1Þhz ¼ sð2Þhz ; wð1Þ ¼ wð2Þ; Uð1Þ ¼ 0 at h ¼ h1
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For PZT-5, the properties are

s11 ¼ 9:46� 10�12 m2=N; s33 ¼ s22 ¼ 14:4� 10�12 m2=N; s12 ¼ �2:98� 10�12 m2=N;

s23 ¼ �7:71� 10�12 m2=N; s55 ¼ 25:2� 10�12 m2=N; s44 ¼ 2ðs22 � s23Þ

g11 ¼ 24:8� 10�3 Vm=N; g13 ¼ g12 ¼ �11:4� 10�3 Vm=N; g35 ¼ g26 ¼ 38:2� 10�3 Vm=N

b11 ¼ 6:65� 107 V2=N; b33 ¼ b22 ¼ 6:53� 107 V2=N

The other constants not shown here are all zero. If the poling direction is not along the x-axis, the coor-
dinate transformation should be applied. The material properties of graphite/epoxy are (Xu and Rajapakse,
2000):

Ex ¼ 132:8 GPa; Ey ¼ 10:76 GPa; Ez ¼ 10:96 GPa

Gxy ¼ Gxz ¼ 5:65 GPa; Gyz ¼ 3:61 GPa

mxy ¼ mxz ¼ 0:24; myz ¼ 0:49

The Young’s modulus and Poisson ratio of the aluminum are E ¼ 68:9 GPa and m ¼ 0:25, respectively.
Before going into detail discussion, the validation of this approach will be examined first. Firstly,

consider a PZT-4 wedge with wedge angle 270�. The poling direction is along the y-axis. The boundary
conditions are traction free ðrh ¼ srh ¼ 0Þ and electrically insulated ðDh ¼ 0Þ at both edges. Using the
formulations of Xu and Rajapakse (2000), the authors compute the singularity orders as Re½k � 1� ¼
�0:4426537, �0.3154704 and �0.04257704, respectively. Based on this approach of generalized plane de-
formation, the boundary conditions are rh ¼ srh ¼ shz ¼ Dh ¼ 0 at both edges. The computed orders are
exactly the same as those of Xu and Rajapakse (2000) for inplane field. In addition, the singularity order of
antiplane field can also be obtained simultaneously, i.e. �0.3194601.

The second case is that two-piezoelectric (PZT-4 and PZT-5) wedges with wedge angles 180� and 90� are
bonded together. The poling direction of the first material (PZT-4) makes 45� with the y-axis counter-
clockwise and that of the second material (PZT-5) is along the y-axis. The authors used Xu’s formulations
and got Re½k � 1� ¼ �0:4529005, �0.3537674, and �0.1079129. Based on the formulations of this paper,
the boundary and continuity conditions are listed in Table 1. The dimension of matrix [M] is 16� 16.
Again, the computed orders of inplane field are exactly the same as the Xu’s results. The antiplane stress
singularity order is �0.3105615.

The third case is the piezoelectric-graphite/epoxy wedges. The wedge angles of piezoelectric and graphite/
epoxy wedges are 180� and 90�, respectively. The poling of the PZT-4 is along the y-axis and the fiber
direction of graphite/epoxy is along the x-axis. If the formulations of Xu and Rajapakse (2000) are used, the
computed singularity orders are �0.34997889 and �0.022600370. This case has been discussed as an ex-
ample in Section 4.1. The boundary and continuity conditions form a 14� 14 matrix [M]. The computed
orders of inplane field are again exactly the same. The antiplane stress singularity order is �0.17022616.

The last compared case is the piezoelectric–conductor wedges. The wedge angles of PZT-4 and alumi-
num are 180� and 90�, respectively. The poling of the PZT-4 is along the y-axis. The calculated results from
Xu’s and generalized plane deformation formulations are exactly the same, i.e. �0.5394357, �0.3828770,
and �0.08007116, for inplane field. The order of the antiplane field is �0.3324470.

From the above discussion, it has been proved that the formulation of generalized plane deformation is
correct as compared with the degenerated case A.
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4.2.1. Degenerated case A
In this section, three examples are investigated. Although Xu and Rajapakse (2000) have discussed these

problems, the results should be reexamined in detail.

4.2.1.1. Example 1: Piezoelectric–conductor wedge. Consider a piezoelectric (PZT-4)/aluminum wedge
bonded to form a half plane. Both of the wedge angles are h2 ¼ h3 ¼ 90�. The boundary and continuity
conditions are listed in Table 2. The dimensions of the decoupled matrices are 10� 10 for inplane field and
4� 4 for antiplane field, respectively. In this case, the coordinate systems XYZ and xyz coincide and
h1 ¼ 0� defined in Fig. 2. The poling direction b is in the x–y plane and is measured from the y-axis
counterclockwise. Fig. 3 shows the variations of the inplane (real and imaginary parts) and antiplane stress
singularity orders with the poling direction b. All of the orders are much weaker than the square root
singularity. The singularity orders are repeated as b is varied from �180� < b < 0� to 0� < b < 180�. There
are two roots over some b regions. This figure is different from Fig. 7(a) of Xu and Rajapakse (2000).
However, using Xu’s formulations, the authors yielded the same results as Fig. 3 of this paper.

Also, the antiplane singular stress field disappears if the poling is directed in the intervals �180� < b <
�90� to 0� < b < 90�.

Consider another example where an aluminum wedge bonded to a PZT-4 half plane (Fig. 4). The poling
directs along the y-axis (and so the Y-axis). The variations of the inplane and antiplane singularity orders
with wedge angle h3 are plotted in Fig. 4. There are three roots for inplane field and the first root is stronger
than �0.5. When h3 approaches 0�, the problem is reduced to a half plane of PZT-4 medium. The order
becomes �0.5. This phenomenon results from the assumptions made on the boundary edges and interface,
i.e. Dh ¼ 0 on the free edge and U ¼ 0 on the interface. As h3 ¼ 0�, the apex of the wedge becomes the
mixed point and singularity order is �0.5. In addition, when h3 is closed to 180�, the third root for inplane
field is different from the plot of Xu (Fig. 7(b) in Xu’s paper). Again, the authors have tried to use Xu’s
formulation and the results are identical to the present approach. For antiplane field, only elastic defor-
mation is considered. As h3 ¼ 0, the wedge becomes a half plane with no singularity. The bonded wedge
forms a crack for h3 ¼ 180� and the singularity order is �0.5.

4.2.1.2. Example 2: Piezoelectric-graphite/epoxy wedge. Fig. 5 shows a graphite/epoxy wedge bonded on the
piezoelectric (PZT-4) half plane. The interface is insulated electrically. The dimension of the matrix [M] is
14� 14 listed in Table 1. The inplane and antiplane singularity orders can be obtained simultaneously. The
poling of piezoeceramic and the fiber of graphite/epoxy are directed along the y- and x-axis, respectively.
Fig. 5 plots the inplane (real and imaginary parts) and antiplane singularity orders. Comparing with

Fig. 3. The variation of stress singularities of a piezoelectric–conductor wedge with h2 ¼ h3 ¼ 90�.
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Fig. 9(a) of Xu and Rajapakse (2000), the overall tendency is the same. However, when the wedge angle
h3 P 165�, some differences appear between the figures. Also, when h3 P 170�, the two inplane roots become
one complex root. The singularity orders in this example are reexamined by Xu’s formulation. The results
are consistent with the present approach. It is noted that, when the wedge angle h3 approaches zero, both of
the inplane and antiplane orders are zero. This result matches the physical nature because both of the
piezoelectric edge and the interface are insulated electrically. No stress singularity is expected if the
graphite/epoxy wedge is removed.

4.2.1.3. Example 3: A debonded PZT-4-graphite/epoxy junction. Consider the last case shown in Fig. 6 of a
debonded PZT-4-graphite/epoxy junction with electrically insulated interfaces. This case can be considered
as a structure of two bonded wedges. The poling of PZT-4 and the fiber of graphite/epoxy are along the y-
and x-axis, respectively. The variations of singularity orders with graphite/epoxy wedge angle ðh3 � h1Þ
ranging from 0� to 360� are plotted in Fig. 6. This plot contains the inplane (real and imaginary parts) and
antiplane singularity orders. Comparing with Fig. 9(b) of Xu and Rajapakse (2000), they are totally dif-
ferent. In Xu’s plot, the angle ðh3 � h1Þ is in the interval between 90� and 270�. In the author’s opinion,
several inconsistencies can be pointed out in Xu’s plot. From the physical standpoint, the wedge structure is

Fig. 4. The variations of singularity orders for an aluminum wedge bonded to a PZT-4 half plane.

Fig. 5. The variations of stress singularity order for a graphite/epoxy wedge bonded to a PZT-4 half plane. The poling direction of

PZT-4 is along y-axis, i.e., b ¼ 0�.
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not symmetric with respect to the interface. The distributions of the singularity order will not be symmetric
with the angle ðh3 � h1Þ ¼ 180�. Also, as ðh3 � h1Þ ¼ 90� or 270�, the singularity will not vanish. In addition,
the values of the order will not change so abruptly as ðh3 � h1Þ is varied from 150� to 210�. Now, consider
the results of this paper (Fig. 6). The plot covers the full range of angle ðh3 � h1Þ ð0� < ðh3 � h1Þ < 360�Þ
and is not symmetric with respect to ðh3 � h1Þ anymore. As ðh3 � h1Þ approaching 0�, the problem is re-
duced to the case of a piezoelectric medium containing a crack. The order approaches the classical square
root type singularity. The singularity orders over the interval 0� < ðh3 � h1Þ < 90� are very close to �0.5. In
the other limiting case where ðh3 � h1Þ approaches 360�, the problem is reduced to the case of a composite
medium containing a crack. Again, the order approaches the square root singularity. In these two limiting
cases, the imaginary parts of the eigenvalue are zero. However, as ðh3 � h1Þ ¼ 180�, it becomes an interface
crack and the order for inplane field is therefore complex. The stress near the crack tip will oscillate. It
should be careful in the calculation of the eigenvalues from Eq. (51). Since the determinant of matrix [M]
contains the term zk which is a multiple-valued quantity, the principal argument should be defined in
�p < ArgðzkÞ6 p. Due to this restriction, the positive X-axis has to be selected opposite to the debonding
crack. When the boundary conditions are applied, the angles h2 and h3 (Fig. 2) of the boundary edges are
input by �179.99999� and 180�, respectively. Consider the singularity orders of antiplane field in Fig. 6.
There are two roots in the interval 90� < ðh3 � h1Þ < 180� and 270� < ðh3 � h1Þ < 360�. The first singularity
orders are weaker or stronger than �0.5 when ðh3 � h1Þ < 180� or ðh3 � h1Þ > 180�, respectively. As
ðh3 � h1Þ ¼ 0�, 180�, and 360�, the classical square root singularity is assured.

4.2.2. Degenerated class B
In this class, the poling direction of the piezoelectric material is along the z-axis. The electro-elastic field

is decoupled as mentioned in Section 3.2. In this section, four examples are investigated.

4.2.2.1. Example 1: Debonded piezoelectric bimaterial junction. Consider a debonded piezoelectric bimaterial
junction shown in Fig. 7. The piezoelectric materials are PZT-4 and PZT-5. Both of these two materials are
polarized along the z-axis. The interface along negative X-axis is fully debonded and electrically insulated.
The x-axis, which makes angle h1 with the X-axis, is indicated as the bonded interface. Based on the plane
strain deformation formulation, the dimension of the matrix [M] is 16� 16. The antiplane stress singularity
orders are plotted in Fig. 7 as the angle h1 is varied. In general, there are three roots except when
h1 ¼ �180�, �90�, 0�, 90�, and 180�. The cases of h1 ¼ �180�, 0� or 180� represent that a crack exists in a
PZT-5 medium, at the PZT-4 and PZT-5 interface, or in a PZT-4 medium, respectively. All of the singu-
larity orders in these three cases are �0.5. Since the material properties of PZT-4 and PZT-5 are very close,

Fig. 6. The variation of stress singularities for a debonded PZT-4-graphite/epoxy junction.
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all of the strongest and the second singularity orders are very close to �0.5, while that of the third orders
are nearly zero. Although the difference is not significant, the variations of the order are not symmetric with
respect to h1 For example as h1 ¼ �90� or 90�, the strongest order is �0.51257 or �0.51066, respectively.

4.2.2.2. Example 2: A graphite/epoxy wedge bonded on piezoelectric medium polarized along the z-axis. Fig. 8
shows a graphite/epoxy wedge fully bonded on the piezoelectric (PZT-4) half plane. The fiber of graphite/
epoxy is along the x-axis. The interface is insulated electrically. The variations of inplane and antiplane
singularity orders with wedge angle h3 are also shown in the figure. When compared with Fig. 5, it is noticed
that the tendencies of these two figures are the same. The example discussed in Section 4.2.1.2 can be
applied here.

4.2.2.3. Example 3: A graphite/epoxy quarter plane bonded to a piezoelectric quarter plane. Consider a half
plane formed by a graphite/epoxy quarter plane and a piezoelectric quarter plan polarized along the z-axis.
The graphite fiber lies in the X–Y plane and makes an angle a with the X-axis. The edge of the PZT-4 is
traction free and electrically insulated, and traction free for graphite/epoxy edge. The boundary and
continuity conditions are listed in Table 1, which form a 14� 14 matrix [M]. Fig. 9 plots the variations of
the inplane and antiplane singularity orders with the fiber orientation a. In general, the stress singularity
orders of this problem are weaker than �0.12. For inplane stress field with no piezoelectric effect, the
singularities disappear in three regions. For antiplane field, no stress singularity occurs when aP 90�.

4.2.2.4. Example 4: An aluminum wedge bonded to a PZT-4 half plane. Consider an aluminum wedge
bonded to a PZT-4 half plane shown in Fig. 10. There are two roots for antiplane stress field. One is varied
with aluminum wedge angle h3 and the other remains at fixed value �0.5. These numerical results can also
be obtained by using the Mellin transform on the antiplane stress function and inplane electric displacement
function. Consider a two-material wedge bonded by a piezoelectric wedge with wedge angle h2 and a
conductor wedge with wedge angle h3. The boundary and continuity conditions are the same as those in this
example. The close form equation for the antiplane singularity order is (will be presented in a separate
paper):

cos kh2ð Þ b11

G
cos kh3ð Þ sin kh2ð Þ

�
� g15g15ð þ b11s44Þ cos kh2ð Þ sin kh3ð Þ

�
¼ 0 ð52Þ

Fig. 7. The variation of stress singularity order for a debonded piezoelectric bimaterial junction.
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Fig. 9. The variation of singularity order for a half plane formed by a graphite/epoxy quarter plane and a piezoelectric quarter plane.

Fig. 10. The variation of inplane and antiplane singularity orders for an aluminum wedge bonded to a PZT-4 half plane. The poling

direction of PZT-4 is along z-axis.

Fig. 8. The variation of stress singularity order for a graphite/epoxy wedge bonded to a PZT-4 half plane. The poling direction of

PZT-4 is along z-axis.
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where G is the shear modulus of the conductor and k is the eigenvalue. In this example h2 ¼ p and h1 ¼ 0,
i.e.

cos kpð Þ ¼ 0 ð53aÞ

b11

G
cos kh3ð Þ sin kpð Þ

�
� g15g15ð þ b11s44Þ cos kpð Þ sin kh3ð Þ

�
¼ 0 ð53bÞ

The solution of Eq. (53a) is k ¼ 0:5, which is independent of h3. The eigenvalues of Eq. (53b) are consistent
with those in Fig. 10 for given material constants.

Since the aluminum is a conductor, the antiplane singularity order is kept at �0.5 when the wedge angle
h3 approaches zero. Again, this is because that the apex of the wedge structure is a mixed boundary value
point.

4.2.3. Generalized plane deformation problems (coupled cases)
In some engineering applications, the composite materials with fibers lying in x–z plane may be bonded

to piezoelectric materials to act as a sensor or actuator. The materials possess no symmetry with respect to
the x–y plane. The coupled formulation of Eq. (9) should be used to calculate the eigenvalues. Three ex-
amples of piezoelectric-graphite/epoxy wedges are investigated in this last section. PZT-4 is polarized along
the y-axis. The orientation of the graphite fiber makes an angle c with the x-axis.

4.2.3.1. Example 1: A graphite/epoxy quarter plane bonded to a piezoelectric quarter plane. Consider that a
graphite/epoxy quarter plane and a piezoelectric (PZT-4) quarter plane are bonded together to form a half
plane. The edge of the PZT-4 is traction free and electrically insulated. The edge of the graphite/epoxy is
traction free. The interface is fully bonded and electrically insulated. Totally, there are 14 boundary and
continuity conditions listed in Table 1 and the dimension of the matrix [M] is 14� 14. Fig. 11 plots the
variations of the singularity order with the graphite fiber angle c. As expected, it is symmetric with respect
to c ¼ 0�. The stress singularity disappears when c;0� The strongest singularity occurs when the graphite
fiber is orientated along the z-axis.

4.2.3.2. Example 2: A graphite/epoxy quarter plane bonded to a piezoelectric half plane. This example is the
same as the previous one except that the PZT-4 wedge angle is 180�. Fig. 12 plots the variations of the
singularity order with the graphite fiber angle c. As expected again, it is symmetric with respect to c ¼ 0�.
Generally there are three roots and the strongest singularity is ;� 0:35 for all c. No disappearance of stress
singularity can be found in this case.

4.2.3.3. Example 3: A debonded PZT-4-graphite/epoxy junction (c ¼ 90�). Consider the last case of a
debonded PZT-4-graphite/epoxy junction shown in Fig. 13. The graphite fiber is orientated along the z-axis
and the poling direction of the PZT-4 is along the y-axis. Actually, the problem can be decoupled into
inplane and antiplane stress fields. The inplane field takes into account the piezoelectric effect, but not the
antiplane field. Fig. 13 plots the variations of the inplane (real and imaginary parts) and antiplane sin-
gularity orders with the graphite/epoxy wedge angle ðh3 � h1Þ. For three special cases when ðh3 � h1Þ ¼ 0�,
180�, and 360�, the real parts of inplane and antiplane singularity orders are all �0.5. When the wedge angle
ðh3 � h1Þ > 180�, the orders are stronger than �0.5. Therefore, if the PZT-4 wedge angle is larger than the
graphite wedge angle, the structure is more easily debonded.
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Fig. 12. The variation of stress singularity orders for a graphite/epoxy wedge bonded to a PZT-4 half plane.

Fig. 13. The inplane and antiplane singularity orders for a debonded piezoelectric-graphite/epoxy junction.

Fig. 11. The variation of stress singularities for a PZT-4-graphite/epoxy bonded wedge with wedge angle h2 ¼ h3 ¼ 90�.
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5. Conclusions

A characteristic equation governing the electro-elastic singularities has been derived under the as-
sumption of generalized plane deformation. From the eight-order polynomial equation, four categories of
degenerated case can be deduced. Class A contains inplane piezoelastic field and antiplane anisotropic
elastic field, while Class B contains inplane anisotropic elastic field and antiplane piezoelastic fields. Class C
is equivalent to the Lekhnitskii’s formulation of anisotropic elasticity and the electric potential field. The
Lekhnitskii’s formulation in Class D is simply decoupled into inplane and antiplane elastic fields. Several
wedge problems bonded by PZT-4, PZT-5, graphite/epoxy or aluminum have been discussed to study the
piezoelectric effect on the singular behavior. In Class A, some inconsistencies in Xu’s paper are examined in
detail. The results of Class B as well as coupled generalized plane deformation are new in this field. The
conditions of weakest or vanishing singular stress fields can be determined by selecting the fiber orientation
of the graphite/epoxy, the poling direction of the piezoelectric material, or the wedge angles. This can
provide a useful guideline to design a reliable smart structure.

Appendix A. Derivation of Eq. (2) under generalized plane deformation formulations

The derivation of generalized plane deformation formulation starts with the assumption that ez is in-
dependent of z. By integrating the third row of Eq. (1), we have

w ¼ zH1ðx; yÞ þ W0ðx; yÞ ðA:1Þ
where w is the displacement in z-direction, W0 is an arbitrary function of x, y and

H1 ¼ s13rx þ s23ry þ s33rz þ s34syz þ s35sxz þ s36sxy þ g13Dx þ g23Dy þ g33Dz ðA:2Þ
After integrating the fourth and fifth rows of Eq. (1) and using Eq. (A.1), it gives

u ¼ � z2

2

oH1

ox
þ z s15rx

�
þ s25ry þ s35rz þ s45syz þ s55sxz þ s56sxy þ g15Dx þ g25Dy þ g35Dz �

oW0

ox

�
þ U0ðx; yÞ ðA:3aÞ

v ¼ � z2

2

oH1

oy
þ z s14rx

�
þ s24ry þ s34rz þ s44syz þ s45sxz þ s46sxy þ g14Dx þ g24Dy þ g34Dz �

oW0

oy

�
þ V0ðx; yÞ ðA:3bÞ

where U0 and V0 are arbitrary functions of x and y. It is noticed that displacements u, v, and w are functions
of x, y, z. Substituting Eqs. (A.3a) and (A.3b) into the first, second and sixth row of Eq. (1) and using the
strain-displacement relations, we get three equations where each contains z2, z and z0. By equating the
coefficients of z2, z and z0 it gives

H1 ¼ s33 Axð þ By þ CÞ ðA:4Þ

s15rx þ s25ry þ s35rz þ s45syz þ s55sxz þ s56sxy þ g15Dx þ g25Dy þ g35Dz �
oW0

ox
¼ ��hhy þ x2 ðA:5aÞ

s14rx þ s24ry þ s34rz þ s44syz þ s45sxz þ s46sxy þ g14Dx þ g24Dy þ g34Dz �
oW0

oy
¼ �hhx� x1 ðA:5bÞ

oU0

ox
¼ s11rx þ s12ry þ s13rz þ s14syz þ s15sxz þ s16sxy þ g11Dx þ g21Dy þ g31Dz ðA:6aÞ
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oV0

oy
¼ s12rx þ s22ry þ s23rz þ s24syz þ s25sxz þ s26sxy þ g12Dx þ g22Dy þ g32Dz ðA:6bÞ

oU0

oy
þ oV0

ox
¼ s16rx þ s26ry þ s36rz þ s46syz þ s56sxz þ s66sxy þ g16Dx þ g26Dy þ g36Dz ðA:6cÞ

where A, B, C, �hh, x1 and x2 are arbitrary constants. Substituting Eq. (A.4) into Eq. (A.2), it gives

rz ¼ Axþ By þ C � 1

s33
s13rx

�
þ s23ry þ s34syz þ s35sxz þ s36sxy þ g13Dx þ g23Dy þ g33Dz

�
ðA:7Þ

Substituting Eqs. (A.5a), (A.5b) and (A.7) into Eqs. (A.1), (A.3a) and (A.3b), one has

u ¼ �As33
2

z2 � �hhyzþ U þ x2z� x3y þ u0 ðA:8aÞ

v ¼ �Bs33
2

z2 þ �hhxzþ V þ x3x� x1zþ v0 ðA:8bÞ

w ¼ Axð þ By þ CÞs33zþ W þ x1y � x2xþ w0 ðA:8cÞ
where u0, v0, w0 and x3 are arbitrary constants and

U ¼ U0 þ x3y � u0 ðA:9aÞ

V ¼ V0 � x3x� v0 ðA:9bÞ

W ¼ W0 � x1y þ x2x� w0 ðA:9cÞ
Substituting Eq. (A.7) into Eqs. (A.6a)–(A.6c) and then into the seventh, eighth, ninth rows of Eq. (1), and
using the relations Eqs. (A.9a)–(A.9c), it gives

oU=ox
oV =oy
oW =oy
oW =ox

oU=oy þ oV =ox
�Ex

�Ey

�Ez

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼

~aa11 ~aa12 ~aa14 ~aa15 ~aa16
~bb11

~bb21
~bb31

~aa12 ~aa22 ~aa24 ~aa25 ~aa26
~bb12

~bb22
~bb32

~aa14 ~aa24 ~aa44 ~aa45 ~aa46
~bb14

~bb24
~bb34

~aa15 ~aa25 ~aa45 ~aa55 ~aa56
~bb15

~bb25
~bb35

~aa16 ~aa26 ~aa46 ~aa56 ~aa66
~bb16

~bb26
~bb36

~bb11
~bb12

~bb14
~bb15

~bb16 �~dd11 �~dd12 �~dd13
~bb21

~bb22
~bb24

~bb25
~bb26 �~dd12 �~dd22 �~dd23

~bb31
~bb32

~bb34
~bb35

~bb36 �~dd13 �~dd23 �~dd33

2
66666666664

3
77777777775

rx

ry

syz
sxz
sxy
Dx

Dy

Dz

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

þ

s13 Axþ By þ Cð Þ
s23 Axþ By þ Cð Þ

s34 Axþ By þ Cð Þ � �hhx� x1

s35 Axþ By þ Cð Þ þ �hhy þ x2

s36 Axþ By þ Cð Þ
g13 Axþ By þ Cð Þ
g23 Axþ By þ Cð Þ
g33 Axþ By þ Cð Þ

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ðA:10Þ

where

~aaij ¼ sij �
si3sj3
s33

ðA:11aÞ
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~bbij ¼ gij �
sj3gi3
s33

ðA:11bÞ

~ddij ¼ bij þ
gi3gj3
s33

ðA:11cÞ

It is noticed that u0, v0, w0, x1, x2, x3 are rigid body motions; �hh is a twisting angle; A and B are parameters
related to bending moments in the x–z and y–z planes; C is parameter related to external normal force Pz.

Assume that Ex, Ey and Ez are functions of x and y only. By definition, the relation between Ez and
electric potential U is

Ez ¼ � oU
oz

ðA:12Þ

By comparing Eq. (A.12) and the eighth row of Eq. (A.10), one has

oU
oz

¼ H2ðx; yÞ þ g33 Axð þ By þ CÞ ðA:13Þ

where

H2 ¼ ~bb31rx þ ~bb32ry þ ~bb34syz þ ~bb35sxz þ ~bb36sxy � ~dd13Dx � ~dd23Dy � ~dd33Dz ðA:14Þ

Integrating Eq. (A.13) with respect to z yields

U ¼ zH2 þ g33z Axð þ By þ CÞ þ U0ðx; yÞ ðA:15Þ
where U0 is an arbitrary function of x and y. It is noticed that U is function of x, y and z. Since
Ex ¼ �ðoU=oxÞ and Ey ¼ �ðoU=oyÞ, the x- and y-components of the electric fields can be written as

Ex ¼ �z
oH2

ox
� Ag33z�

oU0

ox
ðA:16aÞ

Ey ¼ �z
oH2

oy
� Bg33z�

oU0

oy
ðA:16bÞ

Substituting Eqs. (A.16a) and (A.16b) into the sixth and seventh rows of (A.10) and then comparing the
coefficients of z and z0, we obtain

H2 ¼ �g33 Axð þ By þ DÞ ðA:17Þ

~bb11rx þ ~bb12ry þ ~bb14syz þ ~bb15sxz þ ~bb16sxy � ~dd11Dx � ~dd12Dy � ~dd13Dz þ g13 Axð þ By þ CÞ � oU0

ox
¼ 0

ðA:18aÞ

~bb21rx þ ~bb22ry þ ~bb24syz þ ~bb25sxz þ ~bb26sxy � ~dd12Dx � ~dd22Dy � ~dd23Dz þ g23 Axð þ By þ CÞ � oU0

oy
¼ 0

ðA:18bÞ

where D is an arbitrary constant. It is noted that by substituting Eq. (17) into Eq. (15) and then using Eq.
(A.12), we find that Ez is a constant. Substituting Eq. (A.17) into Eq. (A.14), we have

Dz ¼
g33

~dd33
Axð þ By þ DÞ þ 1

~dd33

~bb31rx

�
þ ~bb32ry þ ~bb34syz þ ~bb35sxz þ ~bb36sxy � ~dd13Dx � ~dd23Dy

�
ðA:19Þ
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Substituting Eq. (A.19) into Eqs. (A.18a) and (A.18b) and then into the first five rows of Eq. (A.10), it
yields

oU=ox
oV =oy
oW =oy
oW =ox

oU=oy þ oV =ox
oU0=ox
oU0=oy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

a11 a12 a14 a15 a16 b11 b21

a12 a22 a24 a25 a26 b12 b22

a14 a24 a44 a45 a46 b14 b24

a15 a25 a45 a55 a56 b15 b25

a16 a26 a46 a56 a66 b16 b26

b11 b12 b14 b15 b16 �d11 �d12
b21 b22 b24 b25 b26 �d12 �d22

2
666666664

3
777777775

rx

ry

syz
sxz
sxy
Dx

Dy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

þ fnon-homogeneous termsg

ðA:20Þ

where

aij ¼ ~aaij þ
~bb3i

~bb3j

~dd33
ðA:21aÞ

bij ¼ ~bbij �
~ddi3~bb3j

~dd33
ðA:21bÞ

dij ¼ ~ddij �
~ddi3~ddj3
~dd33

ðA:21cÞ

In Eq. (A.20), the non-homogeneous terms are given as follows

s33 Axð þ By þ CÞ

a1

a2

a4

a5

a6

n1

n2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

þ g33 Cð � DÞ

b1

b2

b4

b5

b6

g1

g2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

þ

0
0

��hhx� x1
�hhy þ x2

0
0
0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ðA:22Þ

where D is a constant and

ai ¼
si3b33 þ g3ig33

s33b33 þ g2
33

; bi ¼
si3g33 � g3is33
s33b33 þ g2

33

ni ¼
gi3b33 � g33bi3

s33b33 þ g2
33

; gi ¼
gi3g33 þ s33bi3

s33b33 þ g2
33

ðA:23Þ

If we discard the rigid body motions u0, v0, w0, x1, x2, x3 and the constants �hh, A, B, C and D, the result is
Eq. (2).
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