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Abstract

This paper presents the formulation of piezoelectric elasticity under generalized plane deformation derived from the
three-dimensional theory. There are four decoupled classes in the generalized plane deformation formulation, i.e. when
Li(p) = B(w) =0, I5(n) = 55(n) =0, I5(n) = I5(n) = 0 or I3(u) = I5(p) = I5(1) = 0. Only the inplane fields of the first
class and the antiplane field of the second class include the piezoelectric effect. Several examples of wedge problem often
encountered in smart structures, such as sensors or actuators are studied to examine the stress singularity near the apex
of the structure. The bonded materials to the PZT-4 wedge are PZT-5, graphite/epoxy or aluminum (conductor). The
influencing factors on the singular behavior of the electro-elastic fields include the wedge angle, material type, poling
direction, and the boundary and interface conditions. The numerical results of the first case are compared with Xu’s
graphs and some comments are made in detail. In addition, some new results regarding the antiplane stress singularity
of the second class are obtained via the case study. The coupled singularity solutions under generalized plane defor-
mation are also investigated to seek the conditions of the weakest or vanishing singular stress fields. © 2002 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials are widely used in actuators due to its electro-mechanical coupling behavior
(Gandhi and Thompson, 1992; Uchino, 1997). The actuators involving piezoelectric materials are usually
synthesized with fiber reinforced composites, electrodes, and other piezoelectric materials. The local regions
of the bonded materials are considered as wedges as shown in Fig. 1. Due to the geometric and material
discontinuities, the stresses approach to infinity theoretically at the apex of the wedge, i.e., the stresses are
singular. The failures initiate from the apex of the wedges frequently if the devices are operated in severe
environments or under strenuous loading conditions.
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Fig. 1. Several typical wedge structures in actuators: (a) Piezoelectric—piezoelectric wedges; (b) piezoelectric-composite wedges; (c)
piezoelectric-conductor wedges; and (d) debonded junctions involving piezoelectric materials.

Several different approaches to electro-elastic field have been proposed. Barnett and Lothe (1975) ex-
tended Stroh’s six-dimensional framework (Stroh, 1962) to an eight-dimensional formalism to solve a
generalized plane problem of piezoelectric body. Sosa (1991) extended the ideas developed by Lekhnitskii
(1963) in anisotropic elasticity to obtain the plane strain formulation of the piezoelectric problems. In
Sosa’s study, a six-order differential operator was performed and was used to solve the inplane problem in
piezoelectric media with defects. Chen and Lai (1997) and Chen and Yen (1998) used the generalized
Lekhnitskii’s formulation to formulate piezoelectric medium under generalized plane deformation.

The fracture mechanics have been widely investigated in the past few years. Parton (1976) first studied
the fracture problem in piezoelectric materials from a theoretical stand point of view. Sosa and Pak (1990)
used eigenfunction expansion to solve the stress and electric fields of a crack in a piezoelectric material. The
results show the characteristic #~° singular behavior of the stress tensor in the vicinity of the crack. Kuo
and Barnett (1991) studied the crack and interface crack in piezoelectric mediums by using an extended
Stroh formulation. The results showed that the singularity orders of interface crack may not be —0.5. In
addition, Shindo et al. (1996, 1997) and Narita and Shindo (1998, 1999) studied the antiplane shear crack
problems in a piezoelectric medium as well as interface cracking between piezoelectric and orthotropic
layers.

Although the crack problems of piezoelectric materials have been widely investigated in the past decade,
the wedge problems involving piezoelectric materials, composite materials, and conductors are rarely re-
ported in the literature. To the author’s knowledge, there is only one paper discussing the piezoelectric
wedges (Xu and Rajapakse, 2000). Before this, the isotropic and/or anisotropic wedge and junction
problems had been extensively studied (e.g. Tranter, 1948; Williams, 1952; Bogy, 1971; Theocaris, 1974;
Bogy, 1972; Delale, 1984; Ting, 1986; Ma and Hour, 1989; Huang and Chen, 1994; Chen, 1998).

The polarized piezoelectric material possesses some symmetry for certain poling orientations. In Xu’s
paper, the poling axis is oriented in the x—y plane, which thereby limits the investigation of the piezoelectric
effect to the inplane field. If the poling direction is along the z-axis, the piezoelectric wedge problem will be
decoupled into inplane and antiplane problems. The inplane field simply consists of the elastic deformation
of stresses (o, 0,, Ty,) and displacements (u, v). The antiplane field couples the antiplane elastic deformation
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(Tuzs Tyz, w) with the inplane electric parameters (D,, D,, Ey, E,, @). Based on the fundamental study of the
coupling behavior by using the eigenfunction expansion, the singularity stress behavior of piezoelectric
wedge problems is investigated in this paper.

2. Basic formulation

The constitutive equation of piezoelectric materials is given as follows:

Ex [s11 s1 S13 S14 S15 Si16 811 821 831 i Ox

&y S12 S22 S$23 S S5 S 812 82 832 Oy

&z S13 823 833 S S35 836 £13 823 833 0

Pz S14 S24  S34 S44  S45  Sa6 814 824 834 Tyz

Vxz = | S15 S25 S35 S45 S55 Ss6  fi15 825 835 Txz (1)
Vxy Si6 526 S36  S46 Ss6 Se6 &6 826 836 Ty
—E, gu g2 g5 &4 &s & —Bu P —Pu|| D
—E, &1 g2 g3 &4 &5 & —Pun —Pn —Pn D,
—E; 1831 8&n &n g4 &5 &6 Pz —Pu —Bu] LD

where ¢;, y;; are normal and shear strains, E; are electric fields, g;, 7;; are normal and shear stresses, D; are
electric displacements, s;; are compliance constants, g;; are piezoelectric constants, and f3;; are impermit-
tivities. Consider a homogeneous piezoelectric body (material 1) bonded by another homogeneous body
(material 2) shown in Fig. 2. The length in longitudinal direction is assumed to be infinite. The body is
referred to the Cartesian coordinates x, y, z. The z-axis is parallel to the longitudinal direction. The body is
assumed to be generalized plane deformation and subjected to generalized plane electric field. All physical
quantities, such as stresses, strains, displacements, electric fields, electric displacements and electric po-
tentials, are functions of x and y only. Eq. (1) can be reduced to the following equation (see Appendix A for
details)

au/ax an ap ais ais ai  bi by Oy

dv/dy ap ap ay axs ax bi by oy

6w/ 6y a4 A4 Q44 Q45 Q4o b4 by Tyz

Ow/0x = |ais as ass ass ass bis b Toz (2)
au/@y + av/ax dlg Ay A4 As56 des b]6 b26 Ty

645/6x by by by bis b —dn —dp D,

6<I>/ dy _b21 by by bys by —dn —dn i D,

where u, v, w, and @ denote the displacements in the x-, y-, z-direction and electric potential, respectively.

a;;, by, di; are the reduced material constants defined as

1S i — 813833/ 93 i — Si3833/8

a; =S — 2o + (& 85/ 23)<g3} 85/ 33) i,j=1,...,6 (3a)
533 Bz + g33833/533
38i i+ 8n83/s | — 53833/ . .

by =g — Sj38i3 (Bis + g8/ 33)(g31 3833/ 33) i=1,2, j=1,...,6 (3b)

' 533 B33 + g33833/533

i38) T & S 3 T 8j3833/8 .

dy = By + 883 (Bis + 83833/533) (Bjs + 8383 /533) ij=1,2 (3c)

533 B3 + 833833 /533
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Poling or fiber directions

Fig. 2. The bimaterial wedge.

In the absence of body force and free charge, define the stress functions F, ¥ and the electric dis-
placement function ¢ as follows
O’F O’F O’F oY oY 0o D 0o @)
Oy =725y 0Op=%5y =724 =% Te="7_> X = A = T A
0?2 T2 Y Ox0y Jy Ox Jy 7 Ox
It can be shown that F, ¥ and ¢ satisfy the equilibrium and Maxwell’s equation automatically. Eliminating
u, v, w, and @ by differentiating (i.e., compatibility equations for strain and electrical fields), it gives

LiF + LY+ L9 =0 (5a)
LiF + LY +Lip =0 (5b)
LiF+ LY+ Ly =0 (5¢)
where
ot ot ot ot ot
Ly = azz@—zazam-ﬁ- (2a1» +a66)w_2a16w+alla_y4 (6a)
63 63 a3 63
Ly = Uz + (a2s + ase) oy (a1a + ass) ox0y? + 0156_y3 (6b)
3 3 63 63
Ly = —by o + (b12 + b26) % — (bzl + b16) W +bu a_y3 (60)
0? 02 02
Ly = ay P 2ays oy + ass o2 (6d)
. 0? 0? 0?
Ly = 524@— (bia +b25)@+b156_y2 (6e)
» 02 02 02
Ly = —d» e + 2dy» o dn o2 (6f)
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Eliminating ¥ and ¢ in Eqgs. (5a)—(5¢) yields

LgF =0 (7)
where
Ly = LyLoLy + 2LsLiL5 — LiL5Ly — LyL3L; — LyLs Ly (8)

Set FF = F(x + ) and u is a complex number. Therefore the characteristic equation of Eq. (7) is

() = L) (015 (1) + 250 () (1) — L) G() () — (@) L) (p) — L)L) 5 (k) =0

©)
where

L(p) = anp® — 2aiep + (2a1; + aes) 1> — a0 + ax (10a)
L(p) = asp’ — (@14 + 5156),112 + (@25 + aue)t — ax (10b)
1(1) = bl — (b + big)i* + (bia + bas)t — by (10c)
() = assp® — 2aus1t + ags (10d)
I3(1) = bisp® — (bis + bas ) + bag (10e)
Iy () = —dy1)* + 2diop — d (10f)

It can be shown that the roots of Eq. (9), denoted as y, (k =1,2,...,8), are complex numbers (Suo et al.,
1992). For convenience, the imaginary parts of y,, u,, tt; and p, are chosen to be positive. us, s, ft; and pg
are conjugate of u;, u,, 45 and p,, respectively. The solution of Egs. (5a)—(5c) can be written as

4
F=Re| Y Flx+ ) (11a)
=1
Similarly,
4
¥ =Re| Y Pilr+ wy) (11b)
=1
4
¢ =Re| Y di(x+ 1) (11c)
=1
By eliminating ¢ in Egs. (5a)—(5c), we can obtain relationship between F; and ¥, as
F
¥, = Akﬁ, for k =1,2,4
de
(12)
1 dF,
Y, =——, fork=3



3136 C.-H. Chue, C.-D. Chen | International Journal of Solids and Structures 39 (2002) 3131-3158

where z; = x 4+ p,y and

13(#1()13*(#1() - lﬁ(uk)lé(uk) -
L) ) — BBy T2
_ ) () 157 () — 55() 15 () _
AN T LB ) — Bl T
. Ly () 5 (i) — 13 (pe) 15 (a4)
() 5 () — Lo () 15 () fork=4

Similarly, eliminating ¥ in Egs. (5a)—(5c), it gives

dF,
Q—~, fork=1,2,3

dz,
A RS
where
RV EmE I
S R e
AT T

Therefore, Egs. (11a)—-(11c) can be rewritten as

F =2RelF, + K+ F; + Fi

1
Y = 2Re |:/11F1/ + Azel + /1_3F3/ + A4FZ:|

1
§ = 2Re [QIF; QU+ uF +Q—F4]
4

By changing the notations
ﬁ=ﬂ7ﬁ=E,ﬁ=%H,ﬂ=$H
Substituting Eqgs. (16a)—(16¢) into Eq. (4) and using the notations of Eq. (17), it gives
0: = 2Re[1f] + 15y + G A + 152413
o, = 2Re[f] + f + Asfi + Quf})
7, = —2Re [#1fll + o fsy + 1 Asfy + .“4Q4fﬂ
Te = 2Re[ A f] + I Aofy + 1 fs + yAaufy]

'L'yz = —2R€ [Alfl/ + Azle +f3/ + A4Q4f4::|

(14)

(15)

(16a)

(16b)

(16¢c)

(17)

(18a)
(18b)
(18¢c)
(18d)

(18e)
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D, = 2Re [ Qif] + 1,2 fs + 1343 f3 + pafy] (18f)

D, = —2Re[Q\f + Qofi + AsQsf1 + f1] (18g)

where f; denote the undetermined complex function; prime denotes the first derivative with respect to the
argument z; (z; = x + ).
Substituting Egs. (18a)—(18g) into Eq. (2) and integrating, the results are

[ 4
u=2Re| ) u;;fk] (19a)
| =1
[ 4
v=2Re Zm] (19b)
| k=1
[ 4
w=2Re| > w fkl (19¢)
| =1
[ 4
®=2Re| > & fkl (19d)
| k=1
[ 4
E,=-2Re| > ®f; (19e)
=1
[ 4
E,=-2Re| ) mzf;] (19f)
| %=1
where
an g + ayy — ady + arspyAx — aropy + by — by fork=1,2
M;: = Ll]l,u/%/lk + alz/lk — a4 + aysiyy — al(,,uk/lk + bll,ukAka — bZIAka for k=3 (203)
an Qi + an — au iy + arspy Ay — arepy Q + by — by for k=4
Aty + an/py — auAi/ ty + ars Ay — aze + b1 Qp — b Qi /1, for k=1,2
Uy = Ay + an i/ — au /iy 4 ars — axAg + b A — by A/, for k=3 (20b)
Ay + anQi /1w, — au A/ 1y + ars A — areQ + by — by /p,  for k=4
araly + ava/ 1y — aua A/ 1y + aas Ay — asg + b1aQp — b Qi / 14 for k=1,2
WZ = a14,uk/1k + 6124/1/(/,11]c — Cl44//lk + ags — a46/1k + b14Aka — b24/1ka/,uk for k=3 (200)
1aty e + a2/ 1y, — asa e/ 1y + ass A — ase 2y + b1a — bos/py, for k=4
by + biy — biaAg + bispyAx — bropy — di i + din for k=1,2
¢It = b“,u,%/lk + blek — b14 + b15,uk — b16,uk/1k — d“,ukAka + d]zAka for k=3 (20(1)
b Qp + b — by + byspy A2 — biopy % — dipy + dip for k =4

The integrating constants, which represent the rigid body motions (Chen and Yen, 1998), are ignored here.
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3. Degenerate cases

Since the diagonal elements in Eq. (2) are non-zero, the polynomials /4(u), Io(u), I5*(1) will not vanish.
However, I5(u), I;(1), I5(x) may be zero for some symmetry properties of materials. Four decoupled
categories can be deduced from the piezoelectric formulation under generalized plane deformation.

3.1. Class A: I3(p) =15(n) =0

If the material symmetry has the properties

S14 = S15 = S24 = 825 = S46 = §56 = S34 = 8§35 = 0

U =gI5=84 =85 =81 =80 =83 =g%6=0 (21)
Biz=P»=0
Eq. (2) becomes
Ou/dx [an a0 0 a b by | ( o
ov/dy ap an 0 0 ax bn by 0y
aw/ay 0 0 Q44  Ays 0 0 0 Tyz
aw/ﬁx = 0 0 Ay4s5  dss 0 0 0 Tyz (22)
6u/6y + av/ax alg A 0 0 age b16 b26 Txy
6(1')/6x b]] b]2 0 0 b](, —d11 —d12 Dx
6@/6}) L b21 b22 0 0 b26 —dlz —dzz | Dy

One example of this case is that the material is symmetric with respect to the x—y plane. The formulation is

decoupled into inplane and antiplane problems. The inplane problem consists of o, 6,, Ty, U, v, Dy, D,, E,,
E, and @, while antiplane problem consists of 1., 7,., w.
Eqgs. (10b) and (10e) yield
(k) = L(w) =0 (23)
and Eq. (9) is reduced to be
L(w) [L(w) 15 (0) = (1) 15(w)] =0 (24)
or
LW (n) — (w5 (w) =0 (25a)
L(u) =0 (25b)

Eq. (25a) corresponds to inplane problem, and Eq. (25b) to antiplane problem. Under this condition, the
mechanical and electrical fields are reduced to the following:

o, = 2Re[iif + 1 f; + 15 /)] (26a)
g, = 2Re[f] + f1 + Quf]] (26b)
T, = —2Re [:ulfl/ +wmafy + .“4Q4fﬂ (26¢)
Dy = 2Re[ Qi f] + 1 fs + tufy) (26d)

Dy = —2Re [Qlfl, + sz‘é +ﬁ:| (266)
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u="2Re[u;fi +u>f> + uf4] (26f)
v=2Re[v}fi + v3f> + Vif4) (26g)
® = 2Re[D}f + D3 /> + Pyfs] (26h)
E, = —2Re[®}f] + ®5f; + P,f] (261)
E, = —2Re[u, B\ f] + 1,51 + 1y D f3] (26j)

for inplane problem, and

e = 2Re[jf] @n)
1. = —2Rel[fi] (27b)
w = 2Re[w}f}] (27¢)

for antiplane problem. If only the antiplane shear stresses 1. or 1,, are applied, there is no electric response
in the piezoelectric body.

Sosa (1991) has derived the formulations of this decoupled case and applied to the problem of an infinite
piezoelectrical medium weakened by an elliptical hole. Later, Xu and Rajapakse (2000) used same for-
mulations to solve the stress singularities in composite piezoelectric wedges and junctions.

3.2. Class B: Is(p) =13(pn) =0

Some material symmetry will lead to /5(u) = /;(¢) = 0. For example, hexagonal 6mm class symmetry is
one of the cases. Eq. (2) has the form:

6u/6x ayn  ap 0 0 0 0 0 Oy

6v/6y app  dp 0 0 0 0 0 gy

ow/0y 0 0 ay 0 O 0 bis Ty

ow/dx =10 0 0 ay O bs 0 Te (28)
Ou/0y + 0v/dx 0 0 0 0 ag O 0 Ty

afp/ax 0 0 0 b15 0 _dll 0 Dx

0P /dy L0 0 &5 0 O 0 —dy D,

where ag = 2(ay; — ayp). It is observed that

ajs = Q14 = Asg = dos = Q4 = dzg = 0

29
biy = by = big = by = by = by = 0 (29)
From Eqgs. (10a)—(10f), it gives /5(u) = I;(n) = 0. Eq. (9) is simplified as

L(w) [L(W) 5 (1) — L(w5(w)] =0 (30)
The mechanical and electrical fields can be rewritten as

o, = 2Re[15f] + 15313 (31a)

o, = 2Re[f] + /3] (31b)



3140 C.-H. Chue, C.-D. Chen | International Journal of Solids and Structures 39 (2002) 3131-3158

Ty = —2Re[f] + /] (31c)
u=2Re[u}fi + us /) (31d)
v =2Re[v}f; + v} /3] (31e)
T = 2Re |3 /3 + g A4 Qufy] (32a)
1. = —2Re[f] + A4 f;] (32b)
w = 2Re[wif] +wf]] (32¢)
D, = 2Re [ A3 Q55 + 1 fi] (32d)
D, = —2Re[A;:f; + f4] (32e)
® = 2Re[D;f; + D} fi] (32f)
E, = —2Re[®}f; + }f4] (32g)
E, = —2Re[; 513 + 1, P13 (32h)

The electro-elastic field is decoupled into the inplane elastic field (o, ,, 7, 4, v) and the antiplane elastic
field (.., 1,.,w) associated with inplane electrical field (D, D,,E\, E,, ®). If only in-plane stresses are ap-
plied, there is no electric response in the piezoelectric body.

The antiplane crack problems of this decoupled case have been extensively investigated in last decade,
such as Shindo et al. (1996, 1997) and Narita and Shindo (1998, 1999). The poling direction is along the z-
axis.

3.3. Class C: No piezoelectric effect (I5(u)=105(n) =0)

For some crystal symmetry, such as orthotropic material (orthorhombic mmm class), the piezoelec-
tric effect is not exhibited. The piezoelectric constants g; and hence 75(u), I5(u) are zero. Eq. (9) becomes

L (w)[la(w) (1) — () 15(w)] = 0 (33)
or

Li(w) (1) — I3 () 15(1) = 0 (34a)

5 () =0 (34b)

Egs. (34a) and (34b) correspond to mechanical and electrical responses, respectively. Also, Eq. (13) is re-
duced to the following form

—M fork=1,2
Ak — lZ(#k) (35)
Y for k=3
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The functions Q;(u;), (1), Qa(ws), As(p3)R23(p3) and Agq(uy,)Qus(py) in Egs. (18a)—(18g) vanish. The
mechanical and electrical fields are then

0. = 2Re[iif] + 1513 + 154513 (36a)
o, =2Re[f] + f5 + A3 f3] (36b)
Ty = —2Re[u f] + 1ofs + 134311 (36¢)
e = 2Re[i A1 f] + 1o Aofs + 153 (36d)
1. = —2Re[Aif] + Aaofy + f3] (36¢)
u=2Re[u}fi +u5f> + uf3] (36f)
v="2Re[v}fi + v3f> + v} 3] (36g)
w = 2Re[wifi +wifs + wifi] (36h)
D, = 2Re |1 f;] (37a)
D, = —2Rel[f]] (37b)
® = 2Re|P,f4] (37¢)
E, = ~2Re[0}] (374)
E, = —2Re[u, @/} (37¢)

The stresses and displacements are exactly the same as the formulations derived by Lekhnitskii (1963). It
can be seen that the mechanical and electrical responses are decoupled. Now, the reduced material con-
stants in Eq. (2) become

8383

aj = Sij K (38&)
ﬂi3 73

=B — 38¢

=P (38c)

3.4. Class D: I;(p) =1I5(p) =13(1) =0

One example of this case is that the principal axes of the orthotropic material are placed in the x—y plane
or along the z-axis. Eq. (9) is simplified as

L(w) L ()15 (1) = 0 (39)
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The problem is decoupled into three parts. They are (a) /4(x) = 0: the inplane case for mechanical response
(04, Gy, Tuy, 4, 0); (b) 1r(pt) = 0: the antiplane case for mechanical response (.., 7,., w) and (c) I5*(u) = 0: the
inplane case for electrical response (D,,D,, E, E,, @). The physical quantities are given as follows:

o, = 2Re[iif] + 1517] (40a)
a, = 2Re[f] + 3] (40b)
Ty = —2Re[wf] + 113 (40c)
u = 2Re[ujfi + ufs)] (40d)
v =2Re[v}f; + v3/3] (40¢)
1. = 2Re (13 /3] (41a)
1, = —2Rel[f}] (41b)
w = 2Re[wif3] (41c)
D, = 2Re[u,fi] (42a)
D, = —2Re[f;] (42b)
@ = 2Re|D,fs] (42c)
E, = —2Re[®}f]] (42d)
E, = —2Re[1, 8] (42¢)

4. Applications to wedge problems

The eigenfunction expansion method is widely used to compute the stress singularity order of the wedge
problems. The potential functions f;(z;) in the physical quantities of Eqs. (18a)—(18g) are written in the
form

filze) = Az} +Biz} k=1,....4 (43)

where A, B, are unknown complex constants, 4 is eigenvalue. It is convenient to express the physical
quantities in polar coordinate when the boundary and continuity conditions on the edges or bonding in-
terface are considered. The transformations of stresses, etc. from Cartesian coordinates to polar coordi-
nates are as follows:

0y = n’o, + m'c, — 2mnz,, (44a)

9 = —mno, + mno, + (m* — n’)t,, (44b)
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Tor = —NTy; + MTy, (44c)

Dy = —nD, + mD, (44d)

where m = cos 0 and n = sin 0.

4.1. Boundary and continuity conditions

Due to the intrinsic electric coupling effect, the sensors and actuators in smart structures often have
several composite wedges involving piezoelectric materials. Fig. 2 shows a two-material wedge system. The
x-axis of the coordinate system xyz is placed along bonded surface. It makes angle 0, with the global
coordinate system XYZ. The wedge angles 0, and 0; are defined in XYZ system. For convenience, material
1 is always referred to as piezoelectric material and material 2 may be piezoelectric material, composite
material or isotropic material (conductor). In the case of generalized plane deformation, all possible
boundary conditions are described as follows.

a. The edge of piezoelectric material

Traction free: oy =10 =15.=0 (45a)

Electrically open: Dy =0 (45b)
b. The edge of composite or conductor material

Traction free: op =10 =10 =0 (46)
¢. The continuity conditions at the piezoelectric—piezoelectric interface

Continuity of stresses: o} = o, 1) =17, 7)) = Y (47a)

Iz

Continuity of displacements: uV = u® v =@ b = (47b)
. . 1 2

Continuity of electric displacements: D) = D (47¢)

Continuity of electric potential: @) = @@ (47d)

The superscripts 1 and 2 denote materials 1 and 2, respectively.
d. Continuity conditions at the piezoelectric-composite interface

Continuity of stresses: 05,1) = af)z>, rf,})) = r%), rf,i) = réi) (48a)
Continuity of displacements: uV) = u® o) = b = (48b)
Electric insulation condition for composites: Df)1> =0 (48¢)

The superscripts 1 and 2 denote the piezoelectric material and composite material, respectively.
e. Continuity conditions at the piezoelectric-conductor interface

Continuity of stresses: oy = o\, 1) =2, 7)) = Y (49a)

Continuity of displacements: uV = u® v =@ b =@ (49b)

Ideal electric conductor condition: @) =0 (49c¢)
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The superscripts 1 and 2 denote the piezoelectric material and conductor material, respectively.

The boundary or continuity conditions can be combined to form different wedge problems. For example,
the boundary and continuity conditions of piezoelectric-composite wedge are Eqs. (45a), (45b), (46), (48a)—
(48¢). These 14 boundary and continuity conditions can be written as

[MI{X} = {0} (50)

where [M] is a 14 x 14 matrix and {X} is a 14 x 1 vector containing the unknown constants 4, and By,
k=1,...,4. The elements in [M] are functions of material constants, wedge angle and eigenvalue /. For a
non-trivial solution, the determinant of [M] must vanish, i.e.,

detiM] =0 (51)

From Eq. (51), the eigenvalues in the interval 0 < Re[A] < | can be solved numerically. The value Re[4] — 1
is called the stress singularity order. Table 1 lists the boundary and continuity conditions and the di-
mensions of matrix [M].

As the generalized plane deformation problem is degenerated to classes A and B as described in Section
3, the dimension can be further reduced. For example, consider that two-piezoelectric material wedges are
bonded together. The poling directions of both materials are in the x—y plane. The dimensions of the matrix
[M] are 12 x 12 and 4 x 4 for inplane and antiplane stress fields, respectively. Table 2 summaries the
boundary and continuity conditions and the dimensions of matrix [M] of all possible degenerated cases. If
the wedge structure consists of composite material, the fiber orientation of the composite should be in the
x—y plane or along the z-axis for all considered degenerate cases. Otherwise the problem is coupled. The
boundary and continuity conditions listed in Table 1 should be employed instead of Table 2. Some ex-
amples of this type will be discussed later.

4.2. Numerical results and discussion

In this section, several examples are considered. Some of them have been investigated by the previous
studies, such as Xu and Rajapakse (2000). The others are new results. Although some of the problems have
been decoupled, we use the generalized plane deformation formulation to solve the eigenvalue. The
boundary conditions are listed in Table 1. The materials used in the following calculation contain PZT-4,

Table 1
The boundary and continuity conditions and the dimension of the characteristic determinant under generalized plane deformation
Wedge type Boundary and continuity conditions Dimension of
characteristic
determinant
One-piezoelec- g9 = 1,0 = T9. = Dy = 0 at both edges 8§ x8
tric wedge

Two-piezoelec- o) =T0="Tp-=Dp=0 at 0 = 0,,05
tric wedge o) =6, ) =78 D) =2y =@ 0 = @, 16 x 16

)
w) =w®, DIV =DP @) = 0@ at 0 =0,

Piezoelectric— 0)=T9=7T0.=Dy=0 at 0 =0,

composite Oy = T = Tp; = 0 at 0= 93

wedge o) =6, ) =78 D) =y =@ 0 =@ W =@ D=0 at =0, 14 x 14
Piezoelectric— Oy = T = Tp; = D() =0 at 0= 92

conductor 0) =T =710.=0 at 0 = 05

wedge ol = 6P ) =@ D) =y — @ 0 = @ ) =@ D =0 at 0 = 0, 14 x 14
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Table 2
The boundary and continuity conditions and the dimension of the characteristic determinant of two degenerate cases for various wedge
types
Wedge type Degenerate cases Boundary and continuity conditions Dimension of
characteristic
determinant
One- Poling: Inplane o9 = 1,0 = Dy = 0 at both edges 6x6
piezoelectric x—y plane Antiplane 79, = 0 at both edges 2x2
wedge .
Poling: Inplane o9 = 1,9 = 0 at both edges 4 x4
z-axis Antiplane 79. = Dy = 0 at both edges 4 x4
Two- Poling: Inplane 09 =1T9=Dp=0 at 0 = 06,,05 12 x 12
piezoelectric x—y plane ol =6, ) =D uh = 4@ o = @)
wedge DV =D, & =@ at =0,
Antiplane 19, =0 at 0= 927 (‘)3 4 x4
r((,l) = rf,i), wh) =w@ at 0 =6,
Poling: Inplane ogp=T10=0 at 0 = 0,,0; 8 x8
z-axis ol =6l ) =72 u) = 4@ ) =@ at o= 0,
Antiplane Tg, =Dy = 0 atd= 02, 03 8 x 8
r((,i) = rfi), wl) = w®, D((,l> = D;,Z), o) = ¢ at 0 =0,
Piezoelectric— Poling: Inplane op=19=Dy=0 at 0 =0, 10 x 10
composite wedge  x—y plane gp=1,=0 at 0 =0
0'5)]) = ()'(()2), rg,) = 1:5?,), uh) = 4@ ) =@, D((,” =0 atl=0
Antiplane 19. =0 at 0 = 06,,05 4 x4
1:5,1,) = 175,2:), wl) =@ at 0 =0,
Poling: Inplane gg=719=0 at 0 =0,,0; 8 x 8
z-axis ol =6l ) =72 u =@ ) =@ at 0= 0,
Antiplane 1. =Dyp=0atf0=20, 1. =0 at 6 = 0 6x6
) =@ wh =@ DIV =0 at 0 =0
Piezoelectric— Poling: Inplane oo=T9=Dy=0 at 0 =0, 10 x 10
conductor wedge  x—y plane 09g =719 =0 at 0 = 0
a?,l) = 0(@, r,(,,]f = r,(.?,), u) =u®, o) =@ @V =0 at =0,
Antiplane 1. =0 at 0 = 06,,05 4 x4
T((?i) = rf,?, w) =w® at § =0,
Poling: Inplane gg=19=0 at 0 = 0,,0; 8 x8
Z-axis a},l) = 022), rf},) = r,%), u) = 4@ (1) =4 at 0 =0,
Antiplane 1. =Dy=0 at0=20,, 1. =0 at 0 = 0, 6x6

D 2 ) = @, 60 =0 at 0= 0,

PZT-5, graphite/epoxy and the aluminum (as a conductor). The material properties of piezoceramics PZT-4
polarized in x-direction are given below (Xu and Rajapakse, 2000):

S11 = 7.9 x 10712 l'I'lz/l\I7
51 = —5.42 % 10712 m?/N,

g1 = 26.1 x 10_3 Vm/N, g13 = 812 = —11.1 x 10_3 Vm/N,

8§33 = S = 10.9 x 10712 mz/N,

S55 = 19.3 x 10712 mz/N,

Bi = 8.69 x 107 V2/N, i3 = By, = 7.66 x 107 V?/N

S = -2.1 x 10712 mZ/N,

S44 = 2(S22 - S23)

35 = g6 = 39.4 x 10_3 Vm/N
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For PZT-5, the properties are

S = 9.46 x 10712 I]flz/N7 S33 = Spp = 14.4 x 10712 I’Ilz/l\I7 S12 = —2.98 x 10712 mz/N,
Sz = —-7.71 % 10712 mz/N, S55 = 252 x 10712 I'l"lz/l\l7 S44 = 2(.5'22 — S23)

g1 =248 x107° Vm/N, gz=gpn=—-114x107 Vm/N, g35 = g6 = 38.2 x 10~ Vm/N

Biy = 6.65x 10" V2/N, B33 = By = 6.53 x 107 V*/N

The other constants not shown here are all zero. If the poling direction is not along the x-axis, the coor-
dinate transformation should be applied. The material properties of graphite/epoxy are (Xu and Rajapakse,
2000):

E,=132.8 GPa, E,=10.76 GPa, E.=10.96 GPa

G, = G,.. = 5.65GPa, G, =361 GPa

Vy =V, =024, v, =049

The Young’s modulus and Poisson ratio of the aluminum are £ = 68.9 GPa and v = 0.25, respectively.

Before going into detail discussion, the validation of this approach will be examined first. Firstly,
consider a PZT-4 wedge with wedge angle 270°. The poling direction is along the y-axis. The boundary
conditions are traction free (gy = 1, = 0) and electrically insulated (Dy = 0) at both edges. Using the
formulations of Xu and Rajapakse (2000), the authors compute the singularity orders as Re[1 — 1] =
—0.4426537, —0.3154704 and —0.04257704, respectively. Based on this approach of generalized plane de-
formation, the boundary conditions are gy = 1,9 = 79. = Dy = 0 at both edges. The computed orders are
exactly the same as those of Xu and Rajapakse (2000) for inplane field. In addition, the singularity order of
antiplane field can also be obtained simultaneously, i.e. —0.3194601.

The second case is that two-piezoelectric (PZT-4 and PZT-5) wedges with wedge angles 180° and 90° are
bonded together. The poling direction of the first material (PZT-4) makes 45° with the y-axis counter-
clockwise and that of the second material (PZT-5) is along the y-axis. The authors used Xu’s formulations
and got Re[4 — 1] = —0.4529005, —0.3537674, and —0.1079129. Based on the formulations of this paper,
the boundary and continuity conditions are listed in Table 1. The dimension of matrix [M] is 16 x 16.
Again, the computed orders of inplane field are exactly the same as the Xu’s results. The antiplane stress
singularity order is —0.3105615.

The third case is the piezoelectric-graphite/epoxy wedges. The wedge angles of piezoelectric and graphite/
epoxy wedges are 180° and 90°, respectively. The poling of the PZT-4 is along the y-axis and the fiber
direction of graphite/epoxy is along the x-axis. If the formulations of Xu and Rajapakse (2000) are used, the
computed singularity orders are —0.34997889 and —0.022600370. This case has been discussed as an ex-
ample in Section 4.1. The boundary and continuity conditions form a 14 x 14 matrix [M]. The computed
orders of inplane field are again exactly the same. The antiplane stress singularity order is —0.17022616.

The last compared case is the piezoelectric-conductor wedges. The wedge angles of PZT-4 and alumi-
num are 180° and 90°, respectively. The poling of the PZT-4 is along the y-axis. The calculated results from
Xu’s and generalized plane deformation formulations are exactly the same, i.e. —0.5394357, —0.3828770,
and —0.08007116, for inplane field. The order of the antiplane field is —0.3324470.

From the above discussion, it has been proved that the formulation of generalized plane deformation is
correct as compared with the degenerated case A.
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4.2.1. Degenerated case A
In this section, three examples are investigated. Although Xu and Rajapakse (2000) have discussed these
problems, the results should be reexamined in detail.

4.2.1.1. Example 1: Piezoelectric—conductor wedge. Consider a piezoelectric (PZT-4)/aluminum wedge
bonded to form a half plane. Both of the wedge angles are 6, = 63 = 90°. The boundary and continuity
conditions are listed in Table 2. The dimensions of the decoupled matrices are 10 x 10 for inplane field and
4 x 4 for antiplane field, respectively. In this case, the coordinate systems XYZ and xyz coincide and
0; = 0° defined in Fig. 2. The poling direction f§ is in the x—y plane and is measured from the y-axis
counterclockwise. Fig. 3 shows the variations of the inplane (real and imaginary parts) and antiplane stress
singularity orders with the poling direction f. All of the orders are much weaker than the square root
singularity. The singularity orders are repeated as £ is varied from —180° < § < 0° to 0° < f < 180°. There
are two roots over some f regions. This figure is different from Fig. 7(a) of Xu and Rajapakse (2000).
However, using Xu’s formulations, the authors yielded the same results as Fig. 3 of this paper.

Also, the antiplane singular stress field disappears if the poling is directed in the intervals —180° < f <
—90° to 0° < f < 90°.

Consider another example where an aluminum wedge bonded to a PZT-4 half plane (Fig. 4). The poling
directs along the y-axis (and so the Y-axis). The variations of the inplane and antiplane singularity orders
with wedge angle 05 are plotted in Fig. 4. There are three roots for inplane field and the first root is stronger
than —0.5. When 05 approaches 0°, the problem is reduced to a half plane of PZT-4 medium. The order
becomes —0.5. This phenomenon results from the assumptions made on the boundary edges and interface,
i.e. Dy =0 on the free edge and @ = 0 on the interface. As 6; = 0°, the apex of the wedge becomes the
mixed point and singularity order is —0.5. In addition, when 6; is closed to 180°, the third root for inplane
field is different from the plot of Xu (Fig. 7(b) in Xu’s paper). Again, the authors have tried to use Xu’s
formulation and the results are identical to the present approach. For antiplane field, only elastic defor-
mation is considered. As 0; = 0, the wedge becomes a half plane with no singularity. The bonded wedge
forms a crack for 83 = 180° and the singularity order is —0.5.

4.2.1.2. Example 2: Piezoelectric-graphitelepoxy wedge. Fig. 5 shows a graphite/epoxy wedge bonded on the
piezoelectric (PZT-4) half plane. The interface is insulated electrically. The dimension of the matrix [M] is
14 x 14 listed in Table 1. The inplane and antiplane singularity orders can be obtained simultaneously. The
poling of piezoeceramic and the fiber of graphite/epoxy are directed along the y- and x-axis, respectively.
Fig. 5 plots the inplane (real and imaginary parts) and antiplane singularity orders. Comparing with

0 1 1 \ 1 I I ] I I 1 1 03
e 7
-~ ~
-0.05 025
01 o2
< Ef
r; -0.15 real part of inplane field L 015 s
D —_ —  real part of antiplane field .
o — — — — — imaginary part of inplane field =
02 4 - o
TN
0.5 7z N - 0.05
4 \
/ \
/I |
0.3 T T T T T T T T 0
-180 -150 -120 -90 -60 30 0 30 60 90 120 150 180
[ (degree)

Fig. 3. The variation of stress singularities of a piezoelectric-conductor wedge with 6, = 0; = 90°.
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Fig. 5. The variations of stress singularity order for a graphite/epoxy wedge bonded to a PZT-4 half plane. The poling direction of
PZT-4 is along y-axis, i.e., § = 0°.

Fig. 9(a) of Xu and Rajapakse (2000), the overall tendency is the same. However, when the wedge angle
0; = 165°, some differences appear between the figures. Also, when 03 > 170°, the two inplane roots become
one complex root. The singularity orders in this example are reexamined by Xu’s formulation. The results
are consistent with the present approach. It is noted that, when the wedge angle 0; approaches zero, both of
the inplane and antiplane orders are zero. This result matches the physical nature because both of the
piezoelectric edge and the interface are insulated electrically. No stress singularity is expected if the
graphite/epoxy wedge is removed.

4.2.1.3. Example 3: A debonded PZT-4-graphitelepoxy junction. Consider the last case shown in Fig. 6 of a
debonded PZT-4-graphite/epoxy junction with electrically insulated interfaces. This case can be considered
as a structure of two bonded wedges. The poling of PZT-4 and the fiber of graphite/epoxy are along the y-
and x-axis, respectively. The variations of singularity orders with graphite/epoxy wedge angle (0; — 0,)
ranging from 0° to 360° are plotted in Fig. 6. This plot contains the inplane (real and imaginary parts) and
antiplane singularity orders. Comparing with Fig. 9(b) of Xu and Rajapakse (2000), they are totally dif-
ferent. In Xu’s plot, the angle (0; — 6;) is in the interval between 90° and 270°. In the author’s opinion,
several inconsistencies can be pointed out in Xu’s plot. From the physical standpoint, the wedge structure is
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Fig. 6. The variation of stress singularities for a debonded PZT-4-graphite/epoxy junction.

not symmetric with respect to the interface. The distributions of the singularity order will not be symmetric
with the angle (0; — 0,) = 180°. Also, as (0; — 0;) = 90° or 270°, the singularity will not vanish. In addition,
the values of the order will not change so abruptly as (6; — 0,) is varied from 150° to 210°. Now, consider
the results of this paper (Fig. 6). The plot covers the full range of angle (6; — 6,) (0° < (6; — 6;) < 360°)
and is not symmetric with respect to (6; — 6;) anymore. As (6; — ;) approaching 0°, the problem is re-
duced to the case of a piezoelectric medium containing a crack. The order approaches the classical square
root type singularity. The singularity orders over the interval 0° < (6; — 0,) < 90° are very close to —0.5. In
the other limiting case where (6; — 0;) approaches 360°, the problem is reduced to the case of a composite
medium containing a crack. Again, the order approaches the square root singularity. In these two limiting
cases, the imaginary parts of the eigenvalue are zero. However, as (6; — 6;) = 180°, it becomes an interface
crack and the order for inplane field is therefore complex. The stress near the crack tip will oscillate. It
should be careful in the calculation of the eigenvalues from Eq. (51). Since the determinant of matrix [M]
contains the term z* which is a multiple-valued quantity, the principal argument should be defined in
—7 < Arg(z*) < m. Due to this restriction, the positive X-axis has to be selected opposite to the debonding
crack. When the boundary conditions are applied, the angles 0, and 0; (Fig. 2) of the boundary edges are
input by —179.99999° and 180°, respectively. Consider the singularity orders of antiplane field in Fig. 6.
There are two roots in the interval 90° < (0; — 0;) < 180° and 270° < (05 — 0,) < 360°. The first singularity
orders are weaker or stronger than —0.5 when (6; — 0,) < 180° or (0; — 0,) > 180°, respectively. As
(05 — 0,) = 0°, 180°, and 360°, the classical square root singularity is assured.

4.2.2. Degenerated class B
In this class, the poling direction of the piezoelectric material is along the z-axis. The electro-elastic field
is decoupled as mentioned in Section 3.2. In this section, four examples are investigated.

4.2.2.1. Example 1: Debonded piezoelectric bimaterial junction. Consider a debonded piezoelectric bimaterial
junction shown in Fig. 7. The piezoelectric materials are PZT-4 and PZT-5. Both of these two materials are
polarized along the z-axis. The interface along negative X-axis is fully debonded and electrically insulated.
The x-axis, which makes angle 6, with the X-axis, is indicated as the bonded interface. Based on the plane
strain deformation formulation, the dimension of the matrix [M]is 16 x 16. The antiplane stress singularity
orders are plotted in Fig. 7 as the angle 0, is varied. In general, there are three roots except when
0, = —180°, —90°, 0°, 90°, and 180°. The cases of §; = —180°, 0° or 180° represent that a crack exists in a
PZT-5 medium, at the PZT-4 and PZT-5 interface, or in a PZT-4 medium, respectively. All of the singu-
larity orders in these three cases are —0.5. Since the material properties of PZT-4 and PZT-5 are very close,
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Fig. 7. The variation of stress singularity order for a debonded piezoelectric bimaterial junction.

all of the strongest and the second singularity orders are very close to —0.5, while that of the third orders
are nearly zero. Although the difference is not significant, the variations of the order are not symmetric with
respect to 0; For example as 0; = —90° or 90°, the strongest order is —0.51257 or —0.51066, respectively.

4.2.2.2. Example 2: A graphitelepoxy wedge bonded on piezoelectric medium polarized along the z-axis. Fig. 8
shows a graphite/epoxy wedge fully bonded on the piezoelectric (PZT-4) half plane. The fiber of graphite/
epoxy is along the x-axis. The interface is insulated electrically. The variations of inplane and antiplane
singularity orders with wedge angle 0; are also shown in the figure. When compared with Fig. 5, it is noticed
that the tendencies of these two figures are the same. The example discussed in Section 4.2.1.2 can be
applied here.

4.2.2.3. Example 3: A graphitelepoxy quarter plane bonded to a piezoelectric quarter plane. Consider a half
plane formed by a graphite/epoxy quarter plane and a piezoelectric quarter plan polarized along the z-axis.
The graphite fiber lies in the X-Y plane and makes an angle « with the X-axis. The edge of the PZT-4 is
traction free and electrically insulated, and traction free for graphite/epoxy edge. The boundary and
continuity conditions are listed in Table 1, which form a 14 x 14 matrix [M]. Fig. 9 plots the variations of
the inplane and antiplane singularity orders with the fiber orientation o. In general, the stress singularity
orders of this problem are weaker than —0.12. For inplane stress field with no piezoelectric effect, the
singularities disappear in three regions. For antiplane field, no stress singularity occurs when o > 90°.

4.2.2.4. Example 4: An aluminum wedge bonded to a PZT-4 half plane. Consider an aluminum wedge
bonded to a PZT-4 half plane shown in Fig. 10. There are two roots for antiplane stress field. One is varied
with aluminum wedge angle 0; and the other remains at fixed value —0.5. These numerical results can also
be obtained by using the Mellin transform on the antiplane stress function and inplane electric displacement
function. Consider a two-material wedge bonded by a piezoelectric wedge with wedge angle 0, and a
conductor wedge with wedge angle 0;. The boundary and continuity conditions are the same as those in this
example. The close form equation for the antiplane singularity order is (will be presented in a separate

paper):

cos (A0,) % cos (A03) sin (10,) — (g15815 + B1154) cos (40,) sin (403) | =0 (52)
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Fig. 8. The variation of stress singularity order for a graphite/epoxy wedge bonded to a PZT-4 half plane. The poling direction of

PZT-4 is along z-axis.
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where G is the shear modulus of the conductor and 4 is the eigenvalue. In this example 6, = = and 6, =0,
1e.

cos(Am) =0 (53a)
/%1 cos (A03) sin (Am) — (g15815 + P11544) cos (Am) sin (A03) | =0 (53b)

The solution of Eq. (53a) is 2 = 0.5, which is independent of 0;. The eigenvalues of Eq. (53b) are consistent
with those in Fig. 10 for given material constants.

Since the aluminum is a conductor, the antiplane singularity order is kept at —0.5 when the wedge angle
05 approaches zero. Again, this is because that the apex of the wedge structure is a mixed boundary value
point.

4.2.3. Generalized plane deformation problems (coupled cases)

In some engineering applications, the composite materials with fibers lying in x—z plane may be bonded
to piezoelectric materials to act as a sensor or actuator. The materials possess no symmetry with respect to
the x—y plane. The coupled formulation of Eq. (9) should be used to calculate the eigenvalues. Three ex-
amples of piezoelectric-graphite/epoxy wedges are investigated in this last section. PZT-4 is polarized along
the y-axis. The orientation of the graphite fiber makes an angle y with the x-axis.

4.2.3.1. Example 1: A graphitelepoxy quarter plane bonded to a piezoelectric quarter plane. Consider that a
graphite/epoxy quarter plane and a piezoelectric (PZT-4) quarter plane are bonded together to form a half
plane. The edge of the PZT-4 is traction free and electrically insulated. The edge of the graphite/epoxy is
traction free. The interface is fully bonded and electrically insulated. Totally, there are 14 boundary and
continuity conditions listed in Table 1 and the dimension of the matrix [M] is 14 x 14. Fig. 11 plots the
variations of the singularity order with the graphite fiber angle y. As expected, it is symmetric with respect
to y = 0°. The stress singularity disappears when y=0° The strongest singularity occurs when the graphite
fiber is orientated along the z-axis.

4.2.3.2. Example 2: A graphitelepoxy quarter plane bonded to a piezoelectric half plane. This example is the
same as the previous one except that the PZT-4 wedge angle is 180°. Fig. 12 plots the variations of the
singularity order with the graphite fiber angle y. As expected again, it is symmetric with respect to y = 0°.
Generally there are three roots and the strongest singularity is = — 0.35 for all y. No disappearance of stress
singularity can be found in this case.

4.2.3.3. Example 3: A debonded PZT-4-graphitelepoxy junction (y = 90°). Consider the last case of a
debonded PZT-4-graphite/epoxy junction shown in Fig. 13. The graphite fiber is orientated along the z-axis
and the poling direction of the PZT-4 is along the y-axis. Actually, the problem can be decoupled into
inplane and antiplane stress fields. The inplane field takes into account the piezoelectric effect, but not the
antiplane field. Fig. 13 plots the variations of the inplane (real and imaginary parts) and antiplane sin-
gularity orders with the graphite/epoxy wedge angle (05 — 0,). For three special cases when (0; — 0;) = 0°,
180°, and 360°, the real parts of inplane and antiplane singularity orders are all —0.5. When the wedge angle
(6; — 6,) > 180°, the orders are stronger than —0.5. Therefore, if the PZT-4 wedge angle is larger than the
graphite wedge angle, the structure is more easily debonded.
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Fig. 11. The variation of stress singularities for a PZT-4-graphite/epoxy bonded wedge with wedge angle 0, = 0; = 90°.
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Fig. 12. The variation of stress singularity orders for a graphite/epoxy wedge bonded to a PZT-4 half plane.
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Fig. 13. The inplane and antiplane singularity orders for a debonded piezoelectric-graphite/epoxy junction.
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5. Conclusions

A characteristic equation governing the electro-elastic singularities has been derived under the as-
sumption of generalized plane deformation. From the eight-order polynomial equation, four categories of
degenerated case can be deduced. Class A contains inplane piezoelastic field and antiplane anisotropic
elastic field, while Class B contains inplane anisotropic elastic field and antiplane piezoelastic fields. Class C
is equivalent to the Lekhnitskii’s formulation of anisotropic elasticity and the electric potential field. The
Lekhnitskii’s formulation in Class D is simply decoupled into inplane and antiplane elastic fields. Several
wedge problems bonded by PZT-4, PZT-5, graphite/epoxy or aluminum have been discussed to study the
piezoelectric effect on the singular behavior. In Class A, some inconsistencies in Xu’s paper are examined in
detail. The results of Class B as well as coupled generalized plane deformation are new in this field. The
conditions of weakest or vanishing singular stress fields can be determined by selecting the fiber orientation
of the graphite/epoxy, the poling direction of the piezoelectric material, or the wedge angles. This can
provide a useful guideline to design a reliable smart structure.

Appendix A. Derivation of Eq. (2) under generalized plane deformation formulations

The derivation of generalized plane deformation formulation starts with the assumption that ¢, is in-
dependent of z. By integrating the third row of Eq. (1), we have

W:ZHl(X,y)+VV()(X,y) (Al)
where w is the displacement in z-direction, W, is an arbitrary function of x, y and
Hy = 5130, + 5230, 4 5330, + 5347,z + 835T0; + 836Txy + &13Dx + €230, + g33D: (A2)
After integrating the fourth and fifth rows of Eq. (1) and using Eq. (A.1), it gives
22 6H1 aI/VO
U=—7 5o T 5150x £ 5250y + 53502 + SasTye + S55Tez + S56Tay + &i5Dx + g2sDy + g3sD: — ™
+ Up(x,y) (A.3a)
22 0H, oW,
v="7% a—yl + Z(Slwx + 5240y + 5340; + S447Ty> + SasTyz + SaeTuy + 814Dy + g24Dy + 34D, — G—yo>
+ (x,y) (A.3b)

where U, and J} are arbitrary functions of x and y. It is noticed that displacements u, v, and w are functions
of x, y, z. Substituting Eqgs. (A.3a) and (A.3b) into the first, second and sixth row of Eq. (1) and using the
strain-displacement relations, we get three equations where each contains z?, z and z°. By equating the
coefficients of 22, z and z° it gives

H1 = S33(Ax + By + C) (A4)
ow, _

S150% + 8250y + 83502 + S457T;z + S55Tx + S56Tay + 15Dy + 25Dy + g35D. — o —0y + o, (A.5a)
owy, =

S140x + §240y + 8340, + S447T)z + S45Txz + Sa6Tay + 14Dy + 824Dy + g3uD. — a =0Ox — (A.5D)

oU,
a—xo = 8110y + 8120, + 5130 + S14T)z + 15T + 16Ty + &u1Dx + gDy + g31D: (A.6a)
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o

6_y0 = S120x + 8220y, + §230; + 5247y + §25Tyz + S26Txy + 12Dy + €020, + g3,D; (A.6b)
oU, or
6_y0 + 6_x0 = S160% + 8260 + 5360 + S46Tyz + S56Txz + Se6Txy + 16Dy + g26D) + g36D: (A.6¢)

where 4, B, C, 0, »; and w, are arbitrary constants. Substituting Eq. (A.4) into Eq. (A.2), it gives
1
. =Ax+By+C— — (S130x + 5230, + 5347z + 35Ty + 536Txy + g13Dx + g23D, + g33Dz) (A.7)
33

Substituting Egs. (A.5a), (A.5b) and (A.7) into Eqgs. (A.1), (A.3a) and (A.3b), one has

—AS33 )

U=——z — Oyz 4+ U 4 wyz — w3y + up (A.8a)
—Bsy 5, &
v=—r2 +0xz+V + w3x —wiz+ vy (A.8b)
w= (Ax+ By+ C)syz+ W + w1y — wpx + wp (A.8¢c)
where ug, vy, wy and w3 are arbitrary constants and
U = U() + w3y — U (A9a)
V= Vb — W3X — Vg (Agb)
W = VV() — 1y + wrx — wy (A9C)

Substituting Eq. (A.7) into Egs. (A.6a)-(A.6¢) and then into the seventh, eighth, ninth rows of Eq. (1), and
using the relations Egs. (A.9a)-(A.9c¢), it gives

oU /ox an an auw ais aie bu by by Ox

oV /oy A Gn au s Gx b bn by ay

ow /oy A4 Gy Aa dss G b bu by Tyz
oW /ox _ | a5 axs ass ass ass bis by bss Taz

oU Jdy + oV /ox dig dx G dse des  bis by b Ty
—E; by b b bis b —du —din —di| | D:

—E, by by by bys by —din —dn —dn||D

—E: [ bs1 by b bys by —diz —dyn —dy] \D:

s13(Ax + By + C)
s23(Ax + By + C)
s3(Ax + By + C) — Ox — o,
s35(Ax + By + C) + 0y +

A.10
+ s36(Ax + By + C) ( )
glg(Ax +By + C)
gi3(Ax+By+C)
g1(Ax +By+C)
where
Gy = 5y — 220 (A.11a)

§33
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by, = g, — 285 (A.11b)
§33
d; =B, +% (A.11c)

It is noticed that ug, vy, wo, @, m2, w3 are rigid body motions; 0 is a twisting angle; 4 and B are parameters
related to bending moments in the x—z and y—z planes; C is parameter related to external normal force P..

Assume that E,, E, and E. are functions of x and y only. By definition, the relation between E, and
electric potential @ is

o
E. — -5 (A.12)
By comparing Eq. (A.12) and the eighth row of Eq. (A.10), one has
Rl
5, = H2(0y) +gx(Ax+ By + C) (A.13)
where
H, = by 0, + 5320y + 534‘5}7 + basty; + 536Txy —dp3D, — &23Dy — ds3D. (A.14)

Integrating Eq. (A.13) with respect to z yields
] :ZH2 +g33Z(AX+By+C) + <I>o(x7y) (AIS)

where @, is an arbitrary function of x and y. It is noticed that @ is function of x, y and z. Since
E, = —(09/0x) and E, = —(09/0y), the x- and y-components of the electric fields can be written as

o, 0@

Ex = 7Z§ Ag332 — g (Al6a)
OH. oo

Ev = —Z—ay2 — Bg3gZ — —ayo <A16b)

Substituting Eqgs. (A.16a) and (A.16b) into the sixth and seventh rows of (A.10) and then comparing the
coefficients of z and z°, we obtain

Hz = —g33(AX+By+D) (A17)
o S b,
b110x 4 b126, + b7,z + bi5Ty: + bi6Tyy, — di Dy — diaD, — di3D. + g13(Ax + By + C) — - 0

(A.18a)
o o,
by10x + b0y + bty + bosty + oty — di2Dy — dn D, — dr3D. + g23(Ax + By + C) — E =0

(A.18b)

where D is an arbitrary constant. It is noted that by substituting Eq. (17) into Eq. (15) and then using Eq.
(A.12), we find that E, is a constant. Substituting Eq. (A.17) into Eq. (A.14), we have

1 /-~ ~ ~ ~ ~ ~ ~
, = ? (A)C —+ By —+ D) —+ g— (bj,]O'x —+ b320'y —+ b34'L'}z + b35’L'xz —+ b36’ny — d13Dx — d23Dy) (A19)
33 33
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Substituting Eq. (A.19) into Egs. (A.18a) and (A.18b) and then into the first five rows of Eq. (A.10), it

yields
oU /ox [an an aw as ae bu by |
6V/6y app  dx dxy dys Ay bi» by
6W/6y A4 A4 daq Q45 Q46 b4 by
GW/ax = |as ax»s as ass ass bis bys
oU /oy + oV /ox ais ax Qs ase Gss  bis by
0d,/0x by by by bis b —dn —dn
09, /0y | ba1 by by bys by —dip —dnx |
where
_ byby
Cl,j = a[j =
dy3
- disbs;
by = by — ==~
ds3
- 67,- d:
dij = dlj — 3 3
ds3
In Eq. (A.20), the non-homogeneous terms are given as follows
o B 0
2%) B, B 0
Olg ﬁ4 —79X —
s33(Ax + By + C)q s o +g3(C—D)q s ¢+ Oy -+
% ﬁ6 0
& m 0
& M 0
where D is a constant and
_ si3Bas + 8383 853833 — £3i533
o =—">, =0 3
s33f33 + 833 s33P33 + 833

_ gi3P3; — g33B53 _ 8383 + 533053
s33fy + 83 s33f33 + 833

i

+ {non-homogeneous terms}

(A.20)

(A.21a)

(A.21b)

(A.21c)

(A.22)

(A.23)

If we discard the rigid body motions ug, vy, wo, @1, @, w; and the constants 0, A4, B, C and D, the result is

Eq. (2).
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